首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

C-reactive protein (CRP) is a predictor of cardiovascular risk. It circulates as a pentameric protein in plasma. Recently, a potential dissociation mechanism from the disc-shaped pentameric CRP (pCRP) into single monomers (monomeric or mCRP) has been described. It has been shown that mCRP has strong pro-inflammatory effects on monocytes. To further define the role of mCRP in determining monocyte phenotype, the effects of CRP isoforms on THP-1 protein expression profiles were determined. The hypothesis to be tested was that mCRP induces specific changes in the protein expression profile of THP-1 cells that differ from that of pCRP.

Methods

Protein cell lysates from control and mCRP, pCRP or LPS-treated THP-1 cells were displayed using 2-dimensional SDS PAGE and compared. Differentially expressed proteins were identified by MALDI-TOF MS and confirmed by Western blotting.

Results

mCRP significantly up-regulates ubiquitin-activating enzyme E1, a member of the ubiquitin-proteasome system in THP-1 monocytes. Furthermore, HSP 70, alpha-actinin-4 (ACTN4) and alpha-enolase/enolase 1 were upregulated. The proteomic profile of LPS and pCRP treated monocytes differ significantly from that of mCRP.

Conclusion

The data obtained in this study support the hypothesis that isoform-specific effects of CRP may differentially regulate the phenotype of monocytes.  相似文献   

2.
Recent evidence suggests that the prototypic acute phase reactant C-reactive protein (CRP) is not only a marker but also a potential contributor to inflammatory diseases. CRP belongs to the family of pentraxins and as such consists of five identical non-covalently linked subunits. Contradictory data on the characteristics of CRP as either being pro- or anti-inflammatory may be explained by the existence of two conformations of the protein: the circulating native, pentameric CRP (pCRP) and the monomeric isoform (mCRP), formed as a result of a dissociation process of pCRP. In vitro both isoforms exhibit a very distinct inflammatory profile. We recently identified a localized, physiologically relevant pCRP dissociation mechanism by activated platelets and apoptotic cells and showed the deposition of mCRP in inflamed tissue. Here we review the literature on the causal role of p- and mCRP in the light of our findings and critically analyze the current controversies around CRP. The novel understanding of the localized dissociation of circulating pentameric CRP to the distinctively pro-inflammatory monomeric CRP allows for a new view on CRP in inflammatory reactions and further highlights mCRP and the pCRP dissociation process as a potential therapeutic target.  相似文献   

3.
The prototypic acute phase reactant C-reactive protein (CRP) is not only a marker but also a potential contributor to inflammatory diseases. CRP exists as the circulating native, pentameric CRP (pCRP) and the monomeric isoform (mCRP), formed as a result of a dissociation process of pCRP. mCRP is highly pro-inflammatory, but pCRP is not. The mechanism of pro-inflammatory action of mCRP is unclear. We studied the role of integrins in pro-inflammatory action of mCRP. Docking simulation of interaction between mCRP and integrin αvβ3 predicted that mCRP binds to αvβ3 well. We found that mCRP actually bound to integrins αvβ3 and α4β1 well. Antagonists to αvβ3 or α4β1 effectively suppressed the interaction, suggesting that the interaction is specific. Using an integrin β1 mutant (β1-3-1) that has a small fragment from the ligand binding site of β3, we showed that mCRP bound to the classical RGD-binding site in αvβ3. We studied the role of integrins in CRP signaling in monocytic U937 cells. Integrins αvβ3 and α4β1 specifically mediated binding of mCRP to U937 cells. mCRP induced AKT phosphorylation, but not ERK1/2 phosphorylation, in U937 cells. Notably, mCRP induced robust chemotaxis in U937 cells, and antagonists to integrins αvβ3 and α4β1 and an inhibitor to phosphatidylinositide 3-kinase, but not an MEK inhibitor, effectively suppressed mCRP-induced chemotaxis in U937 cells. These results suggest that the integrin and AKT/phosphatidylinositide 3-kinase pathways play a role in pro-inflammatory action of mCRP in U937 cells. In contrast, pCRP is predicted to have a limited access to αvβ3 due to steric hindrance in the simulation. Consistent with the prediction, pCRP was much less effective in integrin binding, chemotaxis, or AKT phosphorylation. These findings suggest that the ability of CRP isoforms to bind to the integrins is related to their pro-inflammatory action.  相似文献   

4.
C-reactive protein (CRP) is a pentameric oligoprotein composed of identical 23 kD subunits which can be modified by urea-chelation treatment to a form resembling the free subunit termed modified CRP (mCRP). mCRP has distinct physicochemical, antigenic, and biologic activities compared to CRP. The conditions under which CRP is converted to mCRP, and the molecular forms in the transition, are important to better understand the distinct properties of mCRP and to determine if the subunit form can convert back to the pentameric native CRP form. This study characterized the antigenic and conformational changes associated with the interconversion of CRP and mCRP. The rate of dissociation of CRP protomers into individual subunits by treatment in 8 M urea–10 mM EDTA solution was rapid and complete in 2 min as assayed by an enzyme-linked immunofiltration assay using monoclonal antibodies specific to the mCRP. Attempts to reconstitute pentameric CRP from mCRP under renaturation conditions were unsuccessful, resulting in a protein retaining exclusively mCRP characteristics. Using two-dimensional urea gradient gel electrophoresis, partial rapid unfolding of the pentamer occurred above 3 M urea, a subunit dissociation at 6 M urea, and further subunit unfolding at 6–8 M urea concentrations. The urea gradient electrophoresis results suggest that there are only two predominant conformational states occurring at each urea transition concentration. Using the same urea gradient electrophoresis conditions mCRP migrated as a single molecular form at all urea concentrations showing no evidence for reassociation to pentameric CRP or other aggregate form. The results of this study show a molecular conversion for an oligomeric protein (CRP) to monomeric subunits (mCRP) having rapid forward transition kinetics in 8 M urea plus chelator with negligible reversibility.  相似文献   

5.
C-反应蛋白——关联心血管疾病与炎症的重要分子   总被引:1,自引:0,他引:1  
炎症在心血管疾病(cardiovascular disease,CVD)的各个阶段中均发挥着重要作用。C-反应蛋白(C-reactive protein,CRP)是一种典型的人类急性期蛋白,由5个相同的亚基构成,在临床上被广泛用作炎症的非特异性标识物。近年的研究显示,CRP不仅是CVD发病风险的灵敏标识,而且直接参与调控与CVD相关的炎症过程。基于对已有研究发现的回顾和分析,文章指出CRP的单体形式(monomeric CRP, mCRP)是调控局部炎症过程的主要CRP异构体。  相似文献   

6.
A plastic optical fibre biosensor based on surface plasmon resonance for the detection of C‐reactive protein (CRP) in serum is proposed. The biosensor was integrated into a home‐made thermo‐stabilized microfluidic system that allows avoiding any thermal and/or mechanical fluctuation and maintaining the best stable conditions during the measurements. A working range of 0.006–70 mg L–1 and a limit of detection of 0.009 mg L–1 were achieved. These results are among the best compared to other SPR‐based biosensors for CRP detection, especially considering that they were achieved in a real and complex medium, i.e. serum. In addition, since the sensor performances satisfy those requested in physiologically‐relevant clinical applications, the whole biosensing platform could well address high sensitive, easy to realize, real‐time, label‐free, portable and low cost diagnosis of CRP for future lab‐on‐a‐chip applications.

3D sketch (left) of the thermo‐stabilized home‐made flow cell developed to house the SPR‐based plastic optical fibre biosensor. Exemplary response curve (shift of the SPR wavelength versus time) of the proposed biosensor (right) for the detection of C‐reactive protein in serum.  相似文献   


7.
Surface plasmon resonance (SPR) is a powerful technique for measuring molecular interaction in real-time. SPR can be used to detect molecule to cell interactions as well as molecule to molecule interactions. In this study, the SPR-based biosensing technique was applied to real-time monitoring of odorant-induced cellular reactions. An olfactory receptor, OR I7, was fused with a rho-tag import sequence at the N-terminus of OR I7, and expressed on the surface of human embryonic kidney (HEK)-293 cells. These cells were then immobilized on a SPR sensor chip. The intensity of the SPR response was linearly dependent on the amount of injected odorant. Among all the aldehyde containing odorants tested, the SPR response was specifically high for octanal, which is the known cognate odorant for the OR I7. This SPR response is believed to have resulted from intracellular signaling triggered by the binding of odorant molecules to the olfactory receptors expressed on the cell surface. This SPR system combined with olfactory receptor-expressed cells provides a new olfactory biosensor system for selective and quantitative detection of volatile compounds.  相似文献   

8.
Native C-reactive protein (CRP) is a planar pentamer of identical subunits expressed at high serum levels during the acute phase of inflammation. At inflammatory sites, an isomeric form termed modified CRP (mCRP) is expressed and reveals neoantigenic epitopes associated with modified monomeric CRP subunits. mCRP cannot assume the native pentameric conformation but rather forms a nonpentameric aggregate of monomers. While native CRP inhibits neutrophil movement in vitro and in vivo, the effect of mCRP on neutrophil movement has not been reported. To model the biological function and biochemical interaction of mCRP on neutrophils, in vitro chemotaxis and binding experiments were performed using mCRP. Reported here, mCRP effectively inhibited fMLP-induced chemotaxis similar to native CRP. Additionally, mCRP increased binding of labeled native CRP to neutrophils. This increased binding occurred by direct protein-protein interaction of the C-terminus thereby implicating the CRP(199-206) sequence. Binding of mCRP to neutrophils was blocked by anti-CD16 monoclonal antibody whereas native CRP was not. These results suggest that modified forms of CRP inhibit chemotaxis, a function similar to native CRP, but that mCRP and native molecule bind different receptors on human neutrophils.  相似文献   

9.
The classic acute-phase reactant C-reactive protein (CRP) is a cyclic pentameric protein that diminishes neutrophil accumulation in inflamed tissues. When the pentamer is dissociated, CRP subunits undergo conformational rearrangement that results in expression of a distinctive isomer with unique antigenic and physicochemical characteristics (termed modified CRP (mCRP)). Recently, mCRP was detected in the wall of normal human blood vessels. We studied the impact and mechanisms of action of mCRP on expression of adhesion molecules on human neutrophils and their adhesion to human coronary artery endothelial cells. Both CRP and mCRP (0.1-200 microg/ml) down-regulated neutrophil L-selectin expression in a concentration-dependent fashion. Furthermore, mCRP, but not CRP, up-regulated CD11b/CD18 expression and stimulated neutrophil extracellular signal-regulated kinase activity, which was accompanied by activation of p21(ras) oncoprotein, Raf-1, and mitogen-activated protein kinase kinase. These actions of mCRP were sensitive to the mitogen-activated protein kinase kinase inhibitor PD98059. mCRP markedly enhanced attachment of neutrophils to LPS-activated human coronary artery endothelial when added together with neutrophils. This effect of mCRP was attenuated by an anti-CD18 mAb. Thus, loss of pentameric symmetry in CRP is associated with appearance of novel bioactivities in mCRP that enhance neutrophil localization and activation at inflamed or injured vascular sites.  相似文献   

10.
Human neutrophil granulocytes die rapidly, and their survival is contingent upon rescue from programmed cell death by signals from the environment. Here we report that a novel signal for delaying neutrophil apoptosis is the classic acute phase reactant, C-reactive protein (CRP). However, this anti-apoptotic activity is expressed only when the cyclic pentameric structure of CRP is lost, resulting in formation of modified or monomeric CRP (mCRP), which may be formed in inflamed tissues. By contrast, native pentameric CRP and CRP peptides 77-82, 174-185, and 201-206 failed to affect neutrophil apoptosis. The apoptosis delaying action of mCRP was markedly attenuated by an antibody against the low affinity IgG immune complex receptor (CD16) but not by an anti-CD32 antibody. mCRP evoked a transient concurrent activation of the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase/Akt signaling pathways, leading to inhibition of caspase-3 and consequently to delaying apoptosis. Consistently, pharmacological inhibition of either ERK or Akt reversed the anti-apoptotic action of mCRP; however, they did not produce additive inhibition. Thus, mCRP, but not pentameric CRP or peptides derived from CRP, promotes neutrophil survival and may therefore contribute to amplification of the inflammatory response.  相似文献   

11.
Monoclonal antibodies (Mab) with specificity for protein I (PI) from Neisseria gonorrhoeae (GC) were examined for bactericidal activity. Mab 4G5 (gamma 3), ID3 (gamma 2a), and 1G6 (gamma 2a) bound to surface-exposed epitopes on PI of GC strain R11 (IA serotype) as assessed by co-agglutination and 125I protein A uptake. Mab 2H1 (gamma 3) that were directed against IB serotype strains and Mab 2E9 (gamma 2a) were negative in co-agglutination and protein A uptake assays and served as controls for some experiments. Only 4G5 and 1D3 were bactericidal for R11 when presensitized organisms were incubated in 10% absorbed, pooled normal human serum (PNHS) or 10% hypogammaglobulinemic serum (H gamma S) despite binding of nearly equivalent numbers of 4G5, 1D3, and 1G6 to R11 during presensitization, as assessed by 125I-protein A uptake. These Mab activated complement to a similar extent on GC R11, leading to deposition of 56.4 X 10(3), 61.9 X 1093), and 47.1 X 10(3) molecules of C3/organism during incubation in 10% C8-deficient serum. Deposition occurred almost exclusively via the classical complement pathway. Measurement of complement component C9 binding to R11 during incubation in H gamma S showed 35,700 molecules of C9/organism with 4G5, 32,600 C9/organism with 1D3, and surprisingly, 29,600 C9/organism with 1G6. Eight thousand four hundred molecules of C9/organism bound to 2E9-coated organisms, 6000 C9/organism to 2H1-coated bacteria, and 3600 C9/organism to nonpresensitized organisms. The C5b-9 complex deposited by 4G5 had a different sedimentation profile by sucrose density gradient analysis from the C5b-9 complex deposited by 1G6, consistent with a different molecular configuration of the bound complex. Mab 1G6 and 1D3, but not 2E9 or 2H1, were able to compete with 125I-4G5 for binding to GC R11. A Mab (2E6) directed against protein III of GC competed weakly with 125I-4G5 for binding to GC R11. Mab 1G6, but not 1D3, blocked 4G5-dependent killing in a dose-related fashion. Both 4G5 and IG6 reacted weakly with native PI of GC R11 by immunoblotting, but neither Mab recognized the 34,800 m.w. fragment of PI generated by trypsin and chymotrypsin treatment of outer membranes. In contrast, 2E9 reacted strongly by immunoblot with both native and cleaved PI of GC R11, suggesting binding to buried determinants of PI. These experiments show that Mab directed against identical or closely associated, surface-exposed epitopes on gonococcal PI differ markedly in bactericidal activity, despite leading to deposition of nearly equivalent numbers of C3 and C9 molecules per organism.  相似文献   

12.
The prevalences of cardiovascular disease (CVD) and type 2 diabetes (T2D) have increased among the Navajo Native American community in recent decades. Oxidized low-density lipoprotein (oxLDL) is a novel CVD biomarker that has never been assessed in the Navajo population. We examined the relationship of oxLDL to conventional CVD and T2D risk factors and biomarkers in a cross-sectional population of Navajo participants. This cross-sectional study included 252 participants from 20 Navajo communities from the Diné Network for Environmental Health Project. Plasma samples were tested for oxLDL levels by a sandwich enzyme-linked immunosorbent assay. Univariate and multivariate analyses were used to determine the relationship of oxLDL and oxidized- to non-oxidized lipoprotein ratios to glycated hemoglobin (HbA1c), C-reactive protein (CRP), interleukin 6 (IL6) and demographic and health variables. Type 2 diabetes, hypertension and obesity are very prevalent in this Navajo population. HbA1c, CRP, body mass index (BMI), high-density lipoprotein, and triglycerides were at levels that may increase risk for CVD and T2D. Median oxLDL level was 47 (36.8–57) U/L. Correlational analysis showed that although oxLDL alone was not associated with HbA1c, oxLDL/HDL, oxLDL/LDL and CRP were significantly associated with HbA1c and glucose. OxLDL, oxLDL/HDL and oxLDL/LDL were significantly associated with CRP. Multivariate analysis showed that triglycerides were a common and strong predictor of oxLDL, oxLDL/HDL and oxLDL/LDL. OxLDL was trended with HbA1c and glucose but did not reach significance, however, HbA1c was an independent predictor of OxLDL/HDL. CRP trended with oxLDL/HDL and was a weak predictor of oxLDL/LDL. This Navajo subset appears to have oxLDL levels comparable to subjects without evidence of CVD reported in other studies. The high prevalence of T2D, hypertension and obesity along with abnormal levels of other biomarkers including HbA1c indicate that the Navajo population has a worsening CVD risk profile.  相似文献   

13.
In this study, a novel phase-sensitive surface plasmon resonance (SPR) setup, based on temporal modulation of a pumping beam by a photoelastic modulator, and subsequent extraction of phase information at the second and the third harmonics of the modulation frequency, has been developed to study biomolecular interactions on SPR-supporting gold. We demonstrated that the design setup provides ultra-high phase sensitivity, together with a wide dynamic range of measurements. In particular, the proposed scheme was used to study real-time interaction of biotin-protein and streptavidin-BSA complexes. We have found that the proposed technique has a detection limit as high as 2.89 x 10(-7) in terms of refractive index units (RIU). In terms of biosensing performance, a detection sensitivity of 1.3 nM from the streptavidin-maleimide/thiolated BSA complex binding reaction has also been demonstrated.  相似文献   

14.
15.
《Cytokine》2014,70(2):165-179
C-reactive protein (CRP) is the most acute-phase reactant serum protein of inflammation and a strong predictor of cardiovascular disease. Its expression is associated with atherosclerotic plaque instability and the formation of immature micro-vessels. We have previously shown that CRP upregulates endothelial-derived Notch-3, a key receptor involved in vascular development, remodelling and maturation. In this study, we investigated the links between the bioactive monomeric CRP (mCRP) and Notch-3 signalling in angiogenesis. We used in vitro (cell counting, wound-healing and tubulogenesis assays) and in vivo (chorioallantoic membrane) angiogenic assays and Western blotting to study the angiogenic signalling pathways induced by mCRP and Notch-3 activator chimera protein (Notch-3/Fc). Our results showed an additive effect on angiogenesis of mCRP stimulatory effect combined with Notch-3/Fc promoting bovine aortic endothelial cell (BAEC) proliferation, migration, tube formation in MatrigelTM with up-regulation of phospho-Akt expression. The pharmacological blockade of PI3K/Akt survival pathway by LY294002 fully inhibited in vitro and in vivo angiogenesis induced by mCRP/Notch-3/Fc combination while blocking Notch signalling by gamma-secretase inhibitor (DAPT) partially inhibited mCRP/Notch-3/Fc-induced angiogenesis. Using a BAEC vascular smooth muscle cell co-culture sprouting angiogenesis assay and transmission electron microscopy, we showed that activation of both mCRP and Notch-3 signalling induced the formation of thicker sprouts which were shown later by Western blotting to be associated with an up-regulation of N-cadherin expression and a down-regulation of VE-cadherin expression. Thus, mCRP combined with Notch-3 activator promote angiogenesis through the PI3K/Akt pathway and their therapeutic combination has potential to promote and stabilize vessel formation whilst reducing the risk of haemorrhage from unstable plaques.  相似文献   

16.
The clinical relevance of gene therapy using the recombinant adeno-associated virus (rAAV) vectors often requires widespread distribution of the vector, and in this case, systemic delivery is the optimal route of administration. Humoral blood factors, such as antibodies or complement, are the first barriers met by the vectors administered systemically. We have found that other blood proteins, galectin 3 binding protein (G3BP) and C-reactive protein (CRP), can interact with different AAV serotypes in a species-specific manner. While interactions of rAAV vectors with G3BP, antibodies, or complement lead to a decrease in vector efficacy, systemic transduction of the CRP-deficient mouse and its respective control clearly established that binding to mouse CRP (mCRP) boosts rAAV vector 1 (rAAV-1) and rAAV-6 transduction efficiency in skeletal muscles over 10 times. Notably, the high efficacy of rAAV-6 in CRP-deficient mice can be restored by reconstitution of the CRP-deficient mouse with mCRP. Human CRP (hCRP) does not interact with either rAAV-1 or rAAV-6, and, consequently, the high efficiency of mCRP-mediated muscle transduction by these serotypes in mice cannot be translated to humans. No interaction of mCRP or hCRP was observed with rAAV-8 and rAAV-9. We show, for the first time, that serum components can significantly enhance rAAV-mediated tissue transduction in a serotype- and species-specific manner. Bioprocessing in body fluids should be considered when transfer of a preclinical proof of concept for AAV-based gene therapy to humans is planned.  相似文献   

17.
An absorption-based surface plasmon resonance (SPR(Abs)) biosensor probe has been developed for simple and reproducible measurements of hydrogen peroxide using a modified Trinder's reagent (a chromogenic reagent). The reagent enabled the determination of the hydrogen peroxide concentration by the development of deep color dyes (lambda(max)=630nm) through the oxidative coupling reaction with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethylaniline sodium salt monohydrate (MAOS; C(13)H(20)NNaO(4)S.H(2)O) and 4-aminoantipyrine (4-AA) in the presence of hydrogen peroxide and horseradish peroxidase (HRP). In the present study, urea as an adduct of hydrogen peroxide for color development could be omitted from the measurement solution. The measurement solution containing 5mM hydrogen peroxide was deeply colored at a high absorbance value calculated as 46.7cm(-1) and was directly applied to the SPR(Abs) biosensing without dilution. The measurement was simply performed by dropping the measurement solution onto the surface of the SPR sensor probe, and the SPR(Abs) biosensor response to hydrogen peroxide was obtained as a reflectivity change in the SPR spectrum. After investigation of the pH profiles in the SPR(Abs) biosensor probe, a linear calibration curve was obtained between 1.0 and 50mM hydrogen peroxide (r=0.991, six points, average of relative standard deviation; 0.152%, n=3) with a detection limit of 0.5mM. To examine the applicability of this SPR(Abs) biosensor probe, 20mM glucose detection using glucose oxidase was also confirmed without influence of the refractive index in the measurement solution. Thus, the SPR(Abs) biosensor probe employing the modified Trinder's reagent demonstrated applicability to other analyte biosensing tools.  相似文献   

18.
A monoclonal antibody, Mab 8A2, that recognizes a novel set of gangliosides was produced by immunizing a mouse with Embryonic Day 14 chick optic nerve. Immunohistochemical studies of the developing chick retina revealed a complex pattern of Mab 8A2 immunoreactivity. Initially, staining is concentrated in the optic fiber layer in the central retina. Later in development, the most intense staining is seen at the periphery of the retina and 8A2 immunoreactivity appears in other retina layers. In the adult retina, 8A2 immunoreactivity is lost from the optic fiber layer but persists in the inner plexiform layer, inner nuclear layer, and outer plexiform layer. Cell culture experiments showed intense staining of neurites from retinal ganglion cells but no staining of Muller cells. Biochemical characterization of the epitope recognized by Mab 8A2 suggests that it includes a 9-O-acetyl group that is present on five different gangliosides. The 8A2 immunoreactive gangliosides are distinct from and have slower mobilities on thin-layer chromatographs than those recognized by Mab D1.1 which recognizes 9-O-acetyl GD3.  相似文献   

19.
Surface plasmon resonance (SPR)-based biosensing is one of the most advanced label free, real time detection technologies. Numerous research groups with divergent scientific backgrounds have investigated the application of SPR biosensors and studied the fundamental aspects of surface plasmon polaritons that led to new, related instrumentation. As a result, this field continues to be at the forefront of evolving sensing technology. This review emphasizes the new developments in the field of SPR-related instrumentation including optical platforms, chips design, nanoscale approach and new materials. The current tendencies in SPR-based biosensing are identified and the future direction of SPR biosensor technology is broadly discussed.  相似文献   

20.
A multiplexing bead-based platform provides an approach for the development of assays targeting specific analytes for biomonitoring and biosensing applications. Multi-Analyte Profiling (xMAP) assays typically employ a sandwich-type format using antibodies for the capture and detection of analytes of interest, and the system permits the simultaneous quantitation of multiple targets. In this study, an aptamer/antibody assay for the detection of C-reactive protein (CRP) was developed. CRP is an acute phase marker of inflammation whose elevated basal levels are correlated with an increased risk for a number of pathologies. For this assay, an RNA aptamer that binds CRP was conjugated to beads to act as the capture agent. Biotinylated anti-CRP antibody coupled to fluorescently labeled streptavidin was used for quantification of CRP. The detection limit of the CRP assay was 0.4 mg/L in diluted serum. The assay was then used to detect spiked CRP samples in the range of 0.4 to 10 mg/L in diluted serum with acceptable recoveries (extrapolated values of 70–130%), including that of a certified reference material (129% recovery). The successful incorporation of the CRP aptamer into this platform demonstrates that the exploration of other aptamer–target systems could increase the number of analytes measurable using xMAP-type assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号