首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A simple phenomenological framework for modeling growth of living tissues is proposed. Growth is defined as a change of mass and configuration of the tissue. Tissue is considered as an open system where mass conservation is violated and the full-scale mass balance is applied. A possible structure of constitutive equations is discussed with reference tosimple growing materials. 'Thermoelastic' formulation of the simple growing material is specified. Within this framework traction free growth of cylindrical and spherical bodies is examined. It is shown that the theory accommodates the case where stresses are not generated in uniform volumetric growth. It is also found that surface growth corresponds to aboundary layersolution of the governing equations. This finding proves the ability of continuum mechanics to describe surface growth. The latter is contrary to the usual use of purely kinematical theories, which do not involve balance and constitutive equations, for treating surface growth.  相似文献   

2.
In this study, we sought to model the mechanical behavior of an electrospun tubular scaffold previously reported for vascular tissue engineering with hyperelastic constitutive equations. Specifically, the scaffolds were made by wrapping electrospun polycaprolactone membranes that contain aligned fibers around a mandrel in such a way that they have microstructure similar to the native arterial media. The biaxial stress-stretch data of the scaffolds made of moderately or highly aligned fibers with three different off-axis fiber angles \(\alpha \) (30\(^\circ \), 45\(^\circ \), and 60\(^\circ \)) were fit by a phenomenological Fung model and a series of structurally motivated models considering fiber directions and fiber angle distributions. In particular, two forms of fiber strain energy in the structurally motivated model for a linear and a nonlinear fiber stress–strain relation, respectively, were tested. An isotropic neo-Hookean strain energy function was also added to the structurally motivated models to examine its contribution. The two forms of fiber strain energy did not result in significantly different goodness of fit for most groups of the scaffolds. The absence of the neo-Hookean term in the structurally motivated model led to obvious nonlinear stress-stretch fits at a greater axial stretch, especially when fitting data from the scaffolds with a small \(\alpha \). Of the models considered, the Fung model had the overall best fitting results; its applications are limited because of its phenomenological nature. Although a structurally motivated model using the nonlinear fiber stress–strain relation with the neo-Hookean term provided fits comparably as good as the Fung model, the values of its model parameters exhibited large within-group variations. Prescribing the dispersion of fiber orientation in the structurally motivated model, however, reduced the variations without compromising the fits and was thus considered to be the best structurally motivated model for the scaffolds. It appeared that the structurally motivated models could be further improved for fitting the mechanical behavior of the electrospun scaffold; fiber interactions are suggested to be considered in future models.  相似文献   

3.
A comprehensive study on the spherical indentation of hyperelastic soft materials is carried out through combined theoretical, computational, and experimental efforts. Four widely used hyperelastic constitutive models are studied, including neo-Hookean, Mooney–Rivlin, Fung, and Arruda–Boyce models. Through dimensional analysis and finite element simulations, we establish the explicit relations between the indentation loads at given indentation depths and the constitutive parameters of materials. Based on the obtained results, the applicability of Hertzian solution to the measurement of the initial shear modulus of hyperelastic materials is examined. Furthermore, from the viewpoint of inverse problems, the possibility to measure some other properties of a hyperelastic material using spherical indentation tests, e.g., locking stretch, is addressed by considering the existence, uniqueness, and stability of the solution. Experiments have been performed on polydimethylsiloxane to validate the conclusions drawn from our theoretical analysis. The results reported in this study should help identify the extent to which the mechanical properties of hyperelastic materials could be measured from spherical indentation tests.  相似文献   

4.
This study addresses the issue of modelling material heterogeneity of incompressible bodies. It is seen that when using a mixed (displacement–pressure) finite element formulation, the basis functions used for pressure field may not be able to capture the nonlinearity of material parameters, resulting in pseudo-residual stresses. This problem can be resolved by modifying the constitutive relation using Flory's decomposition of the deformation gradient. A two-parameter Mooney–Rivlin constitutive relation is used to demonstrate the methodology. It is shown that for incompressible materials, the modification does not alter the mechanical behaviour described by the original constitutive model. In fact, the modified constitutive equation shows a better predictability when compared against analytical solutions. Two strategies of describing the material variation (i.e. linear and step change) are explained, and their solutions are evaluated for an ideal two-material interfacing problem. When compared with the standard tied coupling approach, the step change method exhibited a much better agreement because of its ability to capture abrupt changes of the material properties. The modified equation in conjunction with integration point-based material heterogeneity is then used to simulate the deformations of heterogeneous biological structures to illustrate its applications.  相似文献   

5.
Fung elasticity refers to the hyperelasticity constitutive relation proposed by Fung and co-workers for describing the pseudo-elastic behavior of biological soft tissues undergoing finite deformation. A frame-invariant formulation of Fung elasticity is provided for material symmetries ranging from orthotropy to isotropy, which uses Lamé-like material constants. In the orthotropic case, three orthonormal vectors are used to define mutually orthogonal planes of symmetry and associated texture tensors. The strain energy density is then formulated as an isotropic function of the Lagrangian strain and texture tensors. The cases of isotropy and transverse isotropy are derived from the orthotropic case. Formulations are provided for both material and spatial frames. These formulations are suitable for implementation into finite element codes. It is also shown that the strain energy function can be naturally uncoupled into a dilatational and a distortional part, to facilitate the computational implementation of incompressibility.  相似文献   

6.
We employ a structurally-motivated phenomenological formulation to identify biomechanical experiments which can be used to determine a vascular constitutive relation directly from data. Large deformations, nonlinear material behavior, load-dependent anisotropy, material heterogeneity and incompressibility are accounted for in the analysis. For purposes of illustration, we outline a procedure for studying elastic arteries wherein the behavior of the media and adventitia is considered separately. This general approach for identifying vascular constitutive relations can be applied to any vessel or airway, however, and should provide certain advantages over previous microstructural or purely phenomenological formulations.  相似文献   

7.
As patients with muscular dystrophy live longer because of improved clinical care, they will become increasingly susceptible to many of the cardiovascular diseases that affect the general population. There is, therefore, a pressing need to better understand both the biology and the mechanics of the arterial wall in these patients. In this paper, we use nonlinear constitutive relations to model, for the first time, the biaxial mechanical behavior of carotid arteries from two common mouse models of muscular dystrophy (dystrophin-deficient and sarcoglycan-delta null) and wild-type controls. It is shown that a structurally motivated four-fiber family stress-strain relation describes the passive behavior of all three genotypes better than does a commonly used phenomenological exponential model, and that a Rachev-Hayashi model describes the mechanical contribution of smooth muscle contraction under basal tone. Because structurally motivated constitutive relations can be extended easily to model adaptations to altered hemodynamics, results from this study represent an important step toward the ultimate goal of understanding better the mechanobiology and pathophysiology of arteries in muscular dystrophy.  相似文献   

8.
Certain aspects of the mechanical response of arterial walls can be described using nonlinear elasticity theory. Uniaxial tests on vascular walls reveal nonlinear stress-strain behavior, with higher extensibility in the low stretch range and progressively lower extensibility with increasing stretch. This phenomenon is well known in the framework of rubber-like materials where it is called a strain-hardening or strain-stiffening effect. Constitutive models of incompressible hyperelasticity that take this into account include power-law models and limiting chain extensibility models. Our purpose in this paper is to bring to the attention of the biomechanics community some essential features of one such model of the latter type due to Gent. This model is compared with isotropic versions of biomechanical constitutive models by Takamizawa-Hayashi and Fung; the latter is a limiting version of a power-law material. Two particular problems are considered for which experimental data on arterial wall deformations are available. The first concerns small oscillations superposed on a large static stretch of a vertical string of arterial tissue. It is shown that the exponential model of Fung and the Gent model match well with the experimental data. The second problem is the extension of an internally pressurized circular cylindrical tube. It is shown that an inversion phenomenon observed experimentally for the human iliac artery can be described within a membrane theory by the Gent model whereas this cannot be described using the exponential model. The foregoing considerations are carried out for isotropic elastic materials in the absence of residual stress. Extensions to include anisotropy are also indicated.  相似文献   

9.
A number of researchers have studied the mechanical properties of skin and developed constitutive models to describe its behaviour. Typically, many of these studies have concentrated on the uniaxial tensile behaviour of the skin, on the grounds that it will wrinkle under in-plane compression and have minimal stiffness. However, although there is a substantial body of literature on wrinkling models, the practical implementation of such a model of skin in a finite element setting has not been widely addressed. This paper presents computational details of a wrinkling, hyperelastic membrane model and aspects of its implementation and areas requiring further research are discussed. The model is based on an Ogden constitutive model, which provides accurate results at moderate strains, but it would be straightforward to implement other constitutive models such as the Fung or Arruda–Boyce models using a similar approach. Example results are presented which demonstrate that the model can provide a good approximation to experimental data. The model has many other possible applications, both for biological materials and for other thin hyperelastic membranes.  相似文献   

10.
Recent progress in tissue engineering has made it possible to build contractile bio-hybrid materials that undergo conformational changes by growing a layer of cardiac muscle on elastic polymeric membranes. Further development of such muscular thin films for building actuators and powering devices requires exploring several design parameters, which include the alignment of the cardiac myocytes and the thickness/Young's modulus of elastomeric film. To more efficiently explore these design parameters, we propose a 3-D phenomenological constitutive model, which accounts for both the passive deformation including pre-stretch and the active behavior of the cardiomyocytes. The proposed 3-D constitutive model is implemented within a finite element framework, and can be used to improve the current design of bio-hybrid thin films and help developing bio-hybrid constructs capable of complex conformational changes.  相似文献   

11.
Continuum mechanical tools are used to describe the deformation, energy density, and material symmetry of a lipid bilayer with spontaneous curvature. In contrast to conventional approaches in which lipid bilayers are modeled by material surfaces, here we rely on a three-dimensional approach in which a lipid bilayer is modeling by a shell-like body with finite thickness. In this setting, the interface between the leaflets of a lipid bilayer is assumed to coincide with the mid-surface of the corresponding shell-like body. The three-dimensional deformation gradient is found to involve the curvature tensors of the mid-surface in the spontaneous and the deformed states, the deformation gradient of the mid-surface, and the transverse deformation. Attention is also given to the coherency of the leaflets and to the area compatibility of the closed lipid bilayers (i.e., vesicles). A hyperelastic constitutive theory for lipid bilayers in the liquid phase is developed. In combination, the requirements of frame indifference and material symmetry yield a representation for the energy density of a lipid bilayer. This representation shows that three scalar invariants suffice to describe the constitutive response of a lipid bilayer exhibiting in-plane fluidity and transverse isotropy. In addition to exploring the geometrical and physical properties of these invariants, fundamental constitutively associated kinematical quantities are emphasized. On this basis, the effect on the energy density of assuming that the lipid bilayer is incompressible is considered. Lastly, a dimension reduction argument is used to extract an areal energy density per unit area from the three-dimensional energy density. This step explains the origin of spontaneous curvature in the areal energy density. Importantly, along with a standard contribution associated with the natural curvature of the lipid bilayer, our analysis indicates that constitutive asymmetry between the leaflets of the lipid bilayer gives rise to a secondary contribution to the spontaneous curvature.  相似文献   

12.
The highly nonlinear mechanical behaviour of soft tissues solicited within the physiological range usually involves degradation of the material properties. Mechanically, having these biostructures undergoing such stretch patterns may bring about pathological conditions related to the steady deterioration of both collagen fibres and material’s ground substance. Tissue and subject variability observed in the phenomenological mechanical characterisation of soft tissues often hinder the choice of the computational constitutive model. Therefore, this contribution brings forth a detailed overview of the constitutive implementation in a computational framework of anisotropic hyperelastic materials with damage. Surmounting the challenge posed by the mesh dependency pathology requires the incorporation of an integral-type non-local averaging, which seeks to include the effects of the microstructure in order to limit the localisation phenomena of the damage variables. By adopting this approach, one can make use of multiple developed material models available in the literature, a combination of those, or even propose new models within the same numerical framework. The numerical examples of three-dimensional displacement and force-driven boundary value problems highlight the possibility of using multiple material models within the same numerical framework. Particularities concerning the considered material models and the damage effect implications to represent the Mullins effect, induced anisotropy, hysteresis, and mesh dependency are discussed.  相似文献   

13.
14.
We present a new constitutive formulation that combines certain desirable features of two previously used approaches (phenomenological and microstructural). Specifically, we assume that certain soft tissues can be idealized as composed of various families of noninteracting fibers and a homogeneous matrix. Both the fibers and the matrix are assumed to follow the gross deformation. Within the usual framework of pseudoelasticity, incompressibility, homogeneity, and the continuum hypothesis, a pseudostrain-energy function (W) is proposed wherein W is expressed in terms of matrix and fibrous contributions. Unlike phenomenological approaches where a W is usually chosen in an ad hoc manner, the present approach can be used to postulate reasonable forms of W based on limited structural information and multiaxial stress-strain data. Illustrative applications of the theory are discussed for visceral pleura and myocardium. Concise structurally motivated constitutive relations result, wherein load-dependent anisotropy, nonlinear material behavior, finite deformations, and incompressibility are accounted for.  相似文献   

15.
16.
In this study, we investigate the effects of modelling choices for the brain–skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)—extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain–skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain–skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney–Rivlin hyperviscoelastic, neo–Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain–skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.  相似文献   

17.
It is widely accepted that numerous cell types respond to mechanical stimuli, yet there is no general agreement as to whether particular cells respond directly to stress, strain, strain-rate, strain-energy, or other mechanical quantities. By recalling the definitions of the mathematical (not physical) concepts of stress and strain, it is suggested herein that cells cannot respond directly to these continuum metrics or to quantities derived from them--mechanistic models will need to be based on more fundamental quantities, as, for example, inter-atomic forces or conformational changes of the appropriate molecules. Nonetheless, the concepts of stress and strain should continue to play an important role in mechanobiology, both in the identification of empirical correlations and in the development of phenomenological constitutive models, each of which can contribute to our basic understanding as well as help in the design of future experiments and some clinical interventions. It is important to remember, therefore, that empirical correlations and most constitutive relations in continuum mechanics do not seek to model the actual physics--rather, their utility is in their predictive capability, which is often achieved via different relations in terms of different metrics for the same material under different conditions. Hence, with regard to quantifying cellular responses to mechanical stimuli, we must delineate between the identification of fundamental mechanisms and the formulation of phenomenological correlations, the latter of which only requires convenient metrics that need not be unique or physical.  相似文献   

18.
Pair formation     
A multitype pair formation model for a one-sex population, without separation, with given type distribution of singles, produces a distribution of pairs with the given type distribution as a marginal distribution. The pair distribution can be seen as a nonnegative symmetric matrix. For this matrix representation formulas have been given years ago and have been widely used. The goal of the paper is to understand these formulas in probabilistic terms and give a meaning to their coefficients. Our approach connects the formulas to the problem of completing a substochastic matrix to a stochastic matrix. In this way the coefficients in the representation formula can be interpreted as preferences and insight can be gained into the set of distributions respecting given preferences. In order to put these questions into a wider perspective, the classical two-sex pair formation models are reviewed and embedded into the class of one-sex models, and dynamic models are designed that yield pair distributions as limit elements.  相似文献   

19.
Phenomenological models of synaptic plasticity based on spike timing   总被引:5,自引:2,他引:3  
Synaptic plasticity is considered to be the biological substrate of learning and memory. In this document we review phenomenological models of short-term and long-term synaptic plasticity, in particular spike-timing dependent plasticity (STDP). The aim of the document is to provide a framework for classifying and evaluating different models of plasticity. We focus on phenomenological synaptic models that are compatible with integrate-and-fire type neuron models where each neuron is described by a small number of variables. This implies that synaptic update rules for short-term or long-term plasticity can only depend on spike timing and, potentially, on membrane potential, as well as on the value of the synaptic weight, or on low-pass filtered (temporally averaged) versions of the above variables. We examine the ability of the models to account for experimental data and to fulfill expectations derived from theoretical considerations. We further discuss their relations to teacher-based rules (supervised learning) and reward-based rules (reinforcement learning). All models discussed in this paper are suitable for large-scale network simulations.  相似文献   

20.
Summary We present a phenomenological theory expressing the constraints operating on the (G+C) contents of the three codon positions, i.e., first, second, and third bases of codons, by using the smallest number of constraint parameters having clear physical and genetic meaning. Theoretical curves displaying base composition at each of the three codon sites are given. The agreement between the theoretical curves and the data points of 1277 genes is quite good irrespective of the species from which the DNAs originated; the curves might be universal ones and the constraint parameters might have general biological meanings in relation to the DNA/RNA and protein functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号