首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial bioluminescence as a bioassay for mycotoxins.   总被引:3,自引:0,他引:3       下载免费PDF全文
The use of bacterial bioluminescence as a toxicological assay for mycotoxins was tested with rubratoxin B, zearalenone, penicillic acid, citrinin, ochratoxin A, PR-toxin, aflatoxin B1, and patulin. The concentrations of mycotoxins causing 50% light reduction (EC50) in Photobacterium phosphoreum were determined immediately and at 5 h after reconstitution of the bacteria from a freeze-dried state. Generally, less toxins were required to obtain an EC50 at 5 h. The effects of the above mycotoxins on bioluminescence were determined after 5, 10, 15, and 20 min of incubation with the bacterial suspensions. The concentration of rubratoxin B necessary to elicit an EC50 increased with time, whereas the concentration of citrinin, penicillic acid, patulin, and PR-toxin necessary decreased with time. There was very little change in the concentration of zearalenone, aflatoxin B1, and ochratoxin A required to elicit an EC50 with time. The bacterial bioluminescence assay was most sensitive to patulin and least sensitive to rubratoxin B.  相似文献   

2.
The effect of eucalyptus oil on growth and aflatoxin production by Aspergillus flavus was tested at three levels, viz . 0·05, 0·1 and 0·2 ml/50 ml SMKY medium. After 6 days of incubation on 0·05 and 0·1 ml supplemented SMKY medium, growth and toxin production were inhibited while at 0·2 ml concentration there was no growth. However, after 12 days of incubation toxin production was greater than the controls.  相似文献   

3.
Aflatoxin B1 Induction of Lysogenic Bacteria   总被引:1,自引:1,他引:0       下载免费PDF全文
A technique for biological verification of aflatoxin B(1) was developed based on toxin-mediated induction of lysis in a lysogenic strain of Bacillus megaterium NNRL B-3695. Reduction of culture turbidity was determined at various concentrations of toxin. Incubation of 1.1 x 10(-4) g (dry weight) of cells/ml of growth medium containing 25 mug of B(1) per ml at 37 C reduced initial turbidity 0.20 absorbance units in 4 hr. If the bacterial lysate of the lysogenic strain, after a 2-hr incubation with 25 mug of B(1) per ml, was plated with a sensitive B. megaterium strain (NRRL B-3694), plaque-forming units increased approximately 150 times relative to the control. Comparable testing of the effects of aflatoxin on the nonlysogenic, sensitive strain demonstrated that 75 mug of B(1) per ml neither induced lysis nor plaque-forming units. Although induction is not an exclusive property of aflatoxin B(1), the differential response of the lysogenic and sensitive Bacillus strains to B(1) offers a unique and rapid technique for biological verification of the toxin.  相似文献   

4.
o-Methoxycinnamaldehyde has been isolated and purified from powdered cinnamon. The compound inhibits the growth and toxin production of mycotoxin-producing fungi. The substance completely inhibited the growth of Aspergillus parasiticus and A. flavus at 100 microgram/ml and A. ochraceus and A. versicolor at 200 microgram/ml. It inhibited the production of aflatoxin B1 by over 90% at 6.25 microgram/ml, ochratoxin A at 25 microgram/ml, and sterigmatocystin at 50 microgram/ml. The substance also displayed a strong inhibitory effect on the growth of five dermatophytoses species, e.g., Microsporum canis (minimum inhibitory concentration, 3.12 to 6.25 microgram/ml). However, no antibacterial effect was observed at concentrations as high as 50 microgram/ml.  相似文献   

5.
Synthesis of total lipid and aflatoxin by Aspergillus parasiticus as affected by various concentrations of glucose and nitrogen in a defined medium and by different incubation temperatures was studied. Maximal yields of lipid and aflatoxin were obtained with 30% glucose, whereas mold growth, expressed as dry weight, was maximal when the medium contained 10% glucose. Maximal mold growth occurred when the medium contained 3% (NH(4))(2)SO(4); however, 1% (NH(4))(2)SO(4) favored maximum accumulation of lipid and aflatoxin. Growth of mold and synthesis of lipid and toxin also varied with the incubation temperature. Maximal mold growth occurred at 35 C, whereas most toxin appeared at 25 C. Maximal production of lipid occurred at 25 and 35 C but production was more rapid at 35 C. Essentially all glucose in the medium (5% initially) was utilized in 3 days at 25 and 35 C but not in 7 days at 15 and 45 C. Patterns for formation of lipid and aflatoxin were similar at 15 and 25 C when a complete growth medium was used and at 28 C when the substrate contained various concentrations of glucose or (NH(4))(2)SO(4). They were dissimilar when the mold grew at 35 or 45 C. At these temperatures lipid was produced preferentially and only small amounts of aflatoxin appeared.  相似文献   

6.
[14C]rubratoxin B was produced by culturing Penicillium rubrum Stoll for 13 days at 22 °C in medium containing [14C]glucose. The most efficient incorporation of glucose into rubratoxin occurred when Raulin-Thom medium enriched with 2.5% malt extract was supplemented with 2.5% added glucose. The presence of 1.0 mCi of radioactivity in 50 ml of medium with 2.5% added glucose resulted in the production of 38 mg of labeled, chromatographically pure rubratoxin with a specific activity of 0.47 Ci/mole.Rubratoxin B is a hepatotoxic mycotoxin produced by Penicillium rubrum Stoll. It was first isolated by Wilson and Wilson in 1962 (14, 15), and its structure was proposed by Moss in 1968 (11). A simplified procedure for obtaining rubratoxin B in good yield directly from liquid culture media has been described by Hayes and Wilson (6), and there have been numerous investigations of the biological effects of purified rubratoxin B (among others, 4, 7, 9, 12). However due to the insensitivity of the analytical technique for rubratoxin (5), little work has been done to determine the molecular basis of its activity. Determining metabolic products, identifying activated or inactivated toxin complexes or locating binding sites in tissues require a labeled toxin molecule. The purpose of this study was to produce radiolabeled rubratoxin for use in investigations of its various biological activities and also for use in techniques such as autoradiography of tissue sections and radioimmunoassay.Presented in partial fulfillment of the requirements for the degree Master of Science at Iowa State University, Ames, IA 50010.  相似文献   

7.
Requirement of heme for growth of Bacteroides fragilis.   总被引:11,自引:2,他引:9       下载免费PDF全文
Heme or protoporphyrin IX was required for growth of Bacteroides fragilis in a defined medium. The amount of heme necessary for half-maximal growth was 2 to 10 ng/ml (3.8 to 15 pmol/ml) among the Bacteroides species and strains tested. The growth rate, metabolic products from glucose fermentation, and cell yields were affected by the concentration of heme in the medium and by the length of time the culture was incubated. When heme was growth limiting (4 ng/ml), growth rates decreased by 50%, cultures started producing lactic and fumaric acids, and the cell yields declined. The cell yield for B. fragilis (ATCC 25285) at 24 h in medium containing 6.5 microgram of heme per ml was 69 g (dry weight) of cells per mol of glucose compared to 16 g (dry weight) of cells per mol of glucose with 4 ng of heme per ml. B. fragilis was unable to grow in defined medium when a porphyrin precursor, delta-aminolevulenic acid or porphobilinogen, was added in place of heme.  相似文献   

8.
A sterile mineral salts broth was fortified with different additives, inoculated with conidia ofPenicillium rubrum P-13, and incubated quiescently for 14 days or with shaking for 3 to 5 days. Maximal fungal growth and rubratoxin production occurred when the broth contained 20% sucrose. Broth with 10% glucose, 10% fructose, 5% maltose, or 1% asparagine supported formation of substantial amounts of rubratoxin (52.9–78.5 mg/100 ml). When the broth was fortified with glucose plus lysine, arginine aspartic acid, cystine, ammonium citrate, or ammonium phosphate, moderate amounts (27.5–39.5 mg/100 ml) of rubratoxin and mycelium (0.1–1.5 g/100 ml) were produced. Presence in the broth of 5% galactose or starch resulted in accumulation of small amounts (22.2 and 24.6 mg/100 ml, respectively) of rubratoxin and mold tissue (0.70 and 0.5 g/ 100 ml, respectively). Whereas some toxin was recovered from mineral salts broth fortified with lactose or ribose, toxin was not recovered when the mold grew in broth containing mannitol or fumarate. With the exception of gluconate which supported some growth and toxin formation and ethanol which permitted formation of small amounts of toxin, other carbon sources resulted in little or no fungal growth and no toxin formation. Yields of rubratoxin decreased with an increase in amount of agitation or length of incubation ofP. rubrum cultures. Mold growth increased and toxin formation decreased with an increase in volume of culture.  相似文献   

9.
Soil isolates of Aspergillus flavus from a transect extending from eastern New Mexico through Georgia to eastern Virginia were examined for production of aflatoxin B1 and cyclopiazonic acid in a liquid medium. Peanut fields from major peanut-growing regions (western Texas; central Texas; Georgia and Alabama; and Virginia and North Carolina) were sampled, and fields with other crops were sampled in regions where peanuts are not commonly grown. The A. flavus isolates were identified as members of either the L strain (n = 774), which produces sclerotia that are >400 micrometer in diameter, or the S strain (n = 309), which produces numerous small sclerotia that are <400 micrometer in diameter. The S-strain isolates generally produced high levels of aflatoxin B1, whereas the L-strain isolates were more variable in aflatoxin production; variation in cyclopiazonic acid production also was greater in the L strain than in the S strain. There was a positive correlation between aflatoxin B1 production and cyclopiazonic acid production in both strains, although 12% of the L-strain isolates produced only cyclopiazonic acid. Significant differences in production of aflatoxin B1 and cyclopiazonic acid by the L-strain isolates were detected among regions. In the western half of Texas and the peanut-growing region of Georgia and Alabama, 62 to 94% of the isolates produced >10 microgram of aflatoxin B1 per ml. The percentages of isolates producing >10 microgram of aflatoxin B1 per ml ranged from 0 to 52% in the remaining regions of the transect; other isolates were often nonaflatoxigenic. A total of 53 of the 126 L-strain isolates that did not produce aflatoxin B1 or cyclopiazonic acid were placed in 17 vegetative compatibility groups. Several of these groups contained isolates from widely separated regions of the transect.  相似文献   

10.
A sterile glucose-mineral salts broth was fortified with equimolar concentrations (10-3 M) of various organic acids and intermediates in the tricarboxylic acid cycle. Appropriate media were neutralized with 2 N NaOH, inoculated with spore suspensions or mycelial pellets ofPenicillium rubrum and incubated quiescently for 14 days or with shaking for 5 days. Rubratoxins were recovered from culture filtrates by ether extraction and resolved by thin-layer chromatography. Toxin formation in quiescent cultures was enhanced by malonate but was not markedly affected by ethyl malonate, shikimate, and acetate or by isocitrate or oxaloacetate added in the presence of malonate. Citrate, cis-aconitate, -ketoglutarate, succinate, fumarate, and malonate when present in the medium alone or in conjunction with malonate caused a 15 to 50% reduction in rubratoxin formation. Acetyl-CoA (10-5 M/flask) caused an 80% increase in toxin yield. Rubratoxin formation in shake cultures was not affected by succinate and malonate. All other combinations of intermediates and malonate caused a 10 to 50% reduction in toxin formation. At 10–3 M, citrate enhanced rubratoxin B formation and stimulated rubratoxin A production by as much as 100%. Above 10–3 M, citrate inhibited toxin production. Incorporation of [2-14C]acetate into rubratoxin was enhanced by malonate, fumarate, and malonate. A combination of pyruvate and malonate produced a 40% increase in [2-14C]acetate incorporation into rubratoxin. The highest reduction of labeled acetate incorporation (36%) was caused by succinate or -ketoglutarate combined with malonate.  相似文献   

11.
We reported here the role of amino nitrogen in the commercial production of Bacillus thuringiensis var. israelensis media design. The insect pathogen B. thuringiensis var. israelensis was cultured in different media containing varying initial levels of amino nitrogen sources obtained from three different commercial venders. The biomass, mosquito larval toxicity and spore count produced were measured during the fermentation process. The results showed that the higher level of initial amino nitrogen concentrations in the medium led to higher yield of biomass (dry weight 4.78 g l(-1)), larvicidal activity (LC(50) 18.52 ng ml(-1)) and spore count (3.24 x 10(11) CFU ml(-1)). Similarly decreasing the initial amino nitrogen concentration in the medium led to a decreased biomass (dry weight 1.64 g l(-1)), larvicidal activity (LC(50) 27.01 ng ml(-1)) and spore count (3.7 x 10(10) CFUml(-1)).  相似文献   

12.
Production of aflatoxin B1 and fumonisin B1 in pure and mixed cultures of Aspergillus flavus and Fusarium proliferatum were determined on irradiated maize seeds inoculated with different spore concentrations at 0.97 water activity (a(w)) and a temperature of 25 degrees C. The highest levels of aflatoxin B1 were produced by A. flavus at the lowest levels of inoculum (10(3) spore ml(-1)). There was no spore concentration influence on fumonisin B1 production after 10, 20 and 35 days of incubation. When A. flavus was co-inoculated with F. proliferatum, aflatoxin B1 production was inhibited. The higher the inocula levels of Fusarium produced, the higher the inhibition and this inhibition increased during the incubation period. Total inhibition was reached at 35 days of incubation. There was no interaction influence on fumonisin B1 production at all inoculum levels assayed. These results suggest that under optimal environmental conditions of substrate, water activity and temperature, the interaction between A. flavus and F proliferatum could produce inhibition of aflatoxin B1 and stimulation of fumonisin B1.  相似文献   

13.
Total aflatoxin concentrations produced by Aspergillus parasiticus, isolate 64-R8, in Czapek's broth fortified with corn steep liquor increased proportionately as the concentration of corn steep was increased from 0.5 to 8.0% (v/v) until maximal growth, as measured by dry mycelial weight, was reached. Thereafter, aflatoxin concentrations declined more rapidly than the rate of autolysis of mycelial material. Data are presented which indicate that the concentration of corn steep liquor also affects the ratio of production of aflatoxin B(1) and B(2) to that of aflatoxin G(1) and G(2). Further, this ratio also varies with time of incubation. Although both growth of the fungus and aflatoxin production are stimulated by the addition of corn steep to the basic medium, the stimulation of toxin production is much greater than fungus growth.  相似文献   

14.
N Uraih  J R Chipley 《Microbios》1976,17(67):51-59
The effects of sodium chloride, sodium acetate, benzoic acid, sodium benzoate, malonic acid, and sodium malonate on growth and aflatoxin production by Aspergillus flavus were investigated in synthetic media. Sodium chloride at concentrations equivalent to or greater than 12 g/100 ml inhibited growth and aflatoxin production, while at 8 g or less/100 ml, growth and aflatoxin production were stimulated. At 2 g or less/100 ml, sodium acetate also stimulated growth and aflatoxin production, but reduction occurred with 4 g or more/100 ml. Malonic acid at 10, 20, 40, and 50 mM reduced growth and aflatoxin production (over 50%) while sodium malonate at similar concentrations but different pH values had the opposite effect. Benzoic acid (pH 3.9) and sodium benzoate (pH 5.0) at 0.4 g/100 ml completely inhibited growth and aflatoxin production. Examination of the effect of initial pH indicated that the extent of inhibitory action of malonic acid and sodium acetate was a function of initial pH. The inhibitory action of benzoic acid and sodium benzoate appeared to be a function of undissociated benzoic acid molecules. Aflatoxin reduction was usually accompanied by an unidentified orange pigment, while aflatoxin stimulation was accompanied by unidentified blue and green fluorescent spots but with lower Rf values that aflatoxins B1, G1, B2, and G2 standards.  相似文献   

15.
Rubratoxin B can be produced in a semisynthetic medium by Penicillium rubrum under varying environmental and nutritional conditions. Maximum production (552.0 mg/500 ml) was obtained with P. rubrum NRRL A-11785 grown in stationary cultures of Mosseray's simplified Raulin solution supplemented with 2.5% malt extract broth at ambient temperature. Zinc is required at levels of at least 0.4 mg per liter. In the absence of iron sulfate, there was a 50-fold reduction in rubratoxin B production but not in growth. No toxin was produced by this isolate in 5- or 7-liter fermentors.  相似文献   

16.
The fermentation activity of baker's yeast (measured by the amount of produced CO2) is inhibited by 100µg/ml and 10µg/ml aflatoxin B1, and by 100µg/ml and 10µg/ml diacetoxyscirpenol. Lower concentrations of these mycotoxins as well as of rubratoxin B enhance the fermentation. Only 0.001µg/ml aflatoxin B1, 0.00001µg/ml diacetoxyscirpenol and 0.01µg/ml rubratoxin B are without effect or slightly inhibitory. Patulin in all concentrations tested does not influence the CO2 production significantly. Cytochemical studies show that the enzyme alcohol dehydrogenase is inhibited by 100µg/ml and enhanced by 1µg/ml and 0.1µg/ml aflatoxin B1. It is suggested that the influence of at least aflatoxin B1 on the fermentation activity of the yeast cells is due to an interaction with alcohol dehydrogenase. It is possible that the activity of other enzymes of yeast is also influenced by mycotoxins.  相似文献   

17.
The interaction of the pathogen Fusarium moniliforme and two antagonistic Trichoderma harzianum isolates was studied especially with respect to their secondary metabolites fusaric acid (FA) and 6‐pentyl‐alpha‐pyrone (6PAP). Among 10 isolates of F. moniliforme screened for FA production on maize kernels, the isolate 8 accumulated the highest amount of FA (678 μg/g). Mycelial growth and production of FA by isolate 8, determined in different liquid media revealed that the highest biomass and FA were produced in Czapek Dox Broth (CDB) followed by Richard’s solution. The amount of FA per gram mycelial dry weight reached its maximum in CDB and Richard’s solution after 14 days of incubation. Mycelial growth and conidia production of both Trichoderma isolates (T16 and T23) were retarded by increasing concentrations of FA in agar medium. At FA concentration of 300 mg/ml the radial mycelial growth of the isolates T16 and T23 were retarded by 32.5% and 45%, respectively. Conidia production was diminished in a similar extent as mycelial growth. Both T. harzianum isolates were capable to degrade FA in potato dextrose broth medium, particularly when lower doses of FA were present. In the presence of 50 mg/ml FA in the culture medium, the isolates T23 and T16 reduced FA by 51.4% and 88.4%, respectively, 9 days post‐inoculation. The antifungal metabolite 6PAP, isolated from T. harzianum T23 cultures, was introduced at different concentrations into 2‐day‐old cultures of F. moniliforme. After further 5 days of incubation of F. moniliforme in the presence of 6PAP, the FA contents per gram mycelial dry weight were significantly decreased compared to control cultures where 6PAP was absent. Dosages of 300 and 400 mg/l of 6PAP in the cultures retarded FA accumulations by 62.5% and 77.2%, respectively. The current results, however, provided the first evidence for activity of 6PAP, as a Trichoderma secondary metabolite, on degrading/synthesis suppression of the Fusarium toxin FA.  相似文献   

18.
The influence of dimethyl sulphoxide (I), penicillin/streptomycin (II), gentamicin (III), and amphotericin B (IV) on growing human T-lymphoma cells was measured by microcalorimetry. There was a dose-dependent decrease in the heat production rate of the cells after 24 h of incubation with I in concentrations ranging from 0-2% (v/v). At 3.6%, about half of the cells died. II and III had no effect on the cells after incubation for 6 days, at concentrations from 1 to 10 times that of the normal (50-500 IU/ml; 50-500 micrograms/ml). IV was used in combination with II (50 IU/ml; 50 micrograms/ml) and III (50 micrograms/ml), respectively, at concentrations between 0.25 and 7.5 micrograms/ml. After 6 days of incubation, the results were similar to those obtained with II and III separately.  相似文献   

19.
Concentrations resulting in 50% mortality, determined with brine shrimp (Artemia salina L.) larvae exposed to known mycotoxins for 16 hr, were (mug/ml): aflatoxin G(1), 1.3; diacetoxyscirpenol, 0.47; gliotoxin, 3.5; ochratoxin A, 10.1; and sterigmatocystin, 0.54. 4-Acetamido-4-hydroxy-2-butenoic acid gamma-lactone gave no mortality at 10 mug/ml. Used as a screening system involving discs saturated with solutions of known mycotoxins, the larvae were relatively sensitive to aflatoxin B(1), diacetoxyscirpenol, gliotoxin, kojic acid, ochratoxin A, rubratoxin B, sterigmatocystin, stemphone, and T-2 toxin. Quantities of 0.2 to 2 mug/disc caused detectable mortality. The larvae were only moderately sensitive to citrinin, patulin, penicillic acid, and zearalenone which were detectable at 10 to 20 mug/disc. They were relatively insensitive to griseofulvin, luteoskyrin, oxalic acid, and beta-nitropropionic acid. The disc screening method indicated that 27 out of 70 fungal isolates from foods and feeds grown in liquid or solid media produced chloroform-extractable toxic material. Examination of toxic extracts by thin-layer chromatography for 17 known mycotoxins showed that the toxicity of eight isolates could be attributed to aflatoxin B(1) and B(2), kojic acid, zearalenone, T-2 toxin, or ochratoxin A. Nine out of 32 of these fungal isolates grown in four liquid media yielded toxic culture filtrates from at least one medium. Chemical tests for kojic, oxalic, and beta-nitropropionic acids showed the presence of one or two of these compounds in filtrates of seven of these nine isolates.  相似文献   

20.
We have treated a wild type strain of Aspergillus parasiticus with several known aflatoxin inhibitors in hopes of finding specific metabolic blocks in the aflatoxin biosynthetic pathway. In defined medium, benzole acid (2 and 3 mg/ml), cinnamon (1 mg/ml), and sodium acetate (5 mg/ml) were fungitoxic. Benzoic acid (0.5 and 1 mg/ml), chlorox (5 l/ml), and dimethyl sulfoxide (5 l/ml) did not affect dry weight or mycelial pigmentation. Sodium benzoate (1, 2, 4 and 8 mg/ml) added after 2 days growth inhibited aflatoxin production in two defined media. We were unable to confirm previously published reports that an uncharacterized yellow pigment accumulates with benzoate-inhibition of aflatoxin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号