首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis 168 was grown in chemostat culture in fully defined media containing a constant concentration of magnesium and concentrations of phosphate that varied from those giving phosphate-limited growth to those in which phosphate was present in excess and magnesium was limiting. Phosphate-limited bacteria were deficient in wall teichoic acid and contained less than half as much cellular phosphate as did bacteria grown in excess of phosphate. Approximately 70% of the additional phosphate in the latter bacteria was present as wall teichoic acid, indicating that the ability of the bacteria to discontinue teichoic acid synthesis when grown under phosphate limitation permits a substantial increase in their growth yield. Since not all of the additional phosphate is present as wall teichoic acid other cellular phosphates may also be present in reduced amounts in the phosphate-limited bacteria. The content of phosphate groups in walls of magnesium-limited bacteria was similar to the content of uronic acid groups in walls of phosphate-limited bacteria, and walls of bacteria grown in media of intermediate composition contained intermediate proportions of the two anionic polymers. Phage SP50, used as a marker for the presence of teichoic acid, bound densely to nearly all of the bacteria in samples containing down to 22% of the maximum content of teichoic acid. Apparently, therefore, nearly all of these bacteria contain teichoic acid, and the population does not consist of a mixture of individuals having exclusively one kind of anionic polymer. Bacteria containing less than 22% of the maximum content of teichoic bound in a nonuniform manner, and possible explanations for this are discussed.  相似文献   

2.
Two very poorly lytic mutants of Bacillus licheniformis 6346 that had no teichuronic acid or glucose in their walls were phosphoglucomutase deficient. The walls of the mutants were less autolytic, and the lesion in the phosphoglucomutase gene and the formation of lytic amidase seemed to be interrelated. When phosphoglucomutase was regained or the effects of the deficiency were circumvented by the presence of galactose in the medium, the lytic enzyme was partially regained. When subjected to growth limitation by the supply of inorganic phosphate, the mutants ceased to make teichoic acid, and their walls contained a greatly increased proportion of mucopeptide. Under these conditions they formed irregular spheres which changed back to rods when inorganic phosphate was supplied. Both wall and protein synthesis were necessary for the changes in morphology. An intermediate crescent-shaped cell was formed in the change from sphere to a rod. The possible relationship of this morphological change to the distribution of biosynthetic sites is discussed.  相似文献   

3.
1. Ribitol teichoic acids prepared by fractional precipitation of trichloroacetic acid extracts of bacterial cell walls are essentially undegraded and have similar chain length to the teichoic acid originally present in the walls. 2. The chain length of teichoic acid can be determined directly, without prior extraction from the wall. Accurate values have been obtained by measurement of the formaldehyde produced by oxidation of walls with periodate. Less accurate values have been derived from the amount of inorganic phosphate formed by heating walls at pH4. 3. The relative amounts of N-acetylglucosaminylribitol and its mono- and di-phosphates produced by heating walls of Staphylococcus aureus with alkali agree with the amounts calculated for the hydrolysis of teichoic acid having the chain length determined by other methods. 4. Chemical considerations indicate that the linkage between teichoic acid and the wall may involve a phosphoramidate bond between the terminal phosphate of the teichoic acid and one of the amino groups in the glycosaminopeptide.  相似文献   

4.
A study was made to determine whether factors other than the availability of phosphorus were involved in the regulation of synthesis of teichoic and teichuronic acids in Bacillus subtilis subsp. niger WM. First, the nature of the carbon source was varied while the dilution rate was maintained at about 0.3 h-1. Irrespective of whether the carbon source was glucose, glycerol, galactose, or malate, teichoic acid was the main anionic wall polymer whenever phosphorus was present in excess of the growth requirement, and teichuronic acid predominated in the walls of phosphate-limited cells. The effect of growth rate was studied by varying the dilution rate. However, only under phosphate limitation did the wall composition change with the growth rate: walls prepared from cells grown at dilution rates above 0.5 h-1 contained teichoic as well as teichuronic acid, despite the culture still being phosphate limited. The wall content of the cells did not vary with the nature of the growth limitation, but a correlation was observed between the growth rate and wall content. No indications were obtained that the composition of the peptidoglycan of B. subtilis subsp. niger WM was phenotypically variable.  相似文献   

5.
A nutritional mutant of Staphylococcus aureus H has been isolated and grown in media in which the only amino acids are arginine, cysteine, glutamic acid and proline. Walls of the bacteria grown in such media in continuous culture under potassium limitation differ in composition from walls of the bacteria grown in batch culture in rich nutrient broth in that they contain less glycine, the peptidoglycan component is less highly cross-linked and the teichoic acid component contains a reduced proportion of N-acetylglucosaminyl substituents. Walls of the potassium-limited bacteria retain the ability to bind bacteriophage 52a but are more susceptible to the action of lytic peptidases than are wall samples in which the peptidoglycan is more highly cross-linked. Teichoic acid was present in walls of the bacteria grown under phosphate limitation in the defined medium and these walls were also able to absorb bacteriophage 52a.  相似文献   

6.
The morphology and cell wall composition of Bacillus coagulans, a facultative thermophile, were examined as a function of growth temperature. The morphology of the organism varied when it was grown at different temperatures; at 37 C the organism grew as individual cells which increased in length with increasing growth temperature. At 55 C it grew in long chains of cells. Cell wall prepared from cells grown at 37 C contained 44% teichoic acid by weight, whereas cells grown at 55 C contained 29% teichoic acid. Teichoic acid from these cells was a polymer of glycerol phosphate containing galactose and ester alanine. The ratio of ester alanine to phosphate was significantly higher in cell walls and teichoic acid from 37 C-grown cells compared with those from 55 C-grown cells. Other differences observed were that cells grown at 55 C contained a lower level of autolytic ability, produced cell walls which bound more Mg(2+), and contained less peptide cross-bridging in its peptidoglycan layer than cells grown at 37 C.  相似文献   

7.
Cell walls were isolated from cells of Bacillus subtilis strain Marburg during synchronous outgrowth of spores, during the two synchronous cell divisions which followed, and at various times during exponential and early stationary growth. The amounts of teichoic acid and peptidoglycan components were determined in each cell wall preparation. The peptidoglycan is composed of hexosamine, alanine, diaminopimelic acid, and glutamic acid. The ratio of these was relatively constant in the cell walls at each stage of growth. The teichoic acid is composed of glycerol, phosphate, glucose, and ester-linked alanine. With the exception of glucose and ester-linked alanine, the ratios of these components were relatively constant throughout the growth cycle. There was a slight increase in the glucose content of the teichoic acid as the cells aged. There was no correlation between the amount of ester-linked alanine and the stage of growth. The ratio of teichoic acid (based upon phosphate content) to peptidoglycan (based upon diaminopimelic acid content) remained at nearly a constant level throughout the growth cycle. The conclusion is presented that these two cell wall polymers are coordinately synthesized during spore outgrowth and throughout the vegetative growth cycle.  相似文献   

8.
Choline-containing pneumococcal cell wals are sensitive to autolysin, whereas ethanolamine-containing walls are not. Bacteria were labeled with radioactive peptidoglycan precursors while growing either in choline- or in ethanolaminecontaining media. Subsequently, the labeled cells were allowed to grow for four to five generations in nonradioactive medium supplemented with the alternative amino alcohol source (i.e. cells labeled in choline medium yields ethanolamine; cells labeled in ethanolamine medium yields choline). The autolysin sensitivity of the isotope label in cell walls prepared from such bacteria indicates that nascent peptidoglycan and teichoic acid units that are synthesized at the same time are attached to one another, incorporated into the cell surface at the cellular equator, and remain conserved during growth the division of the bacteria.  相似文献   

9.
1. The effects of teichoic acids on the Mg(2+)-requirement of some membrane-bound enzymes in cell preparations from Bacillus licheniformis A.T.C.C. 9945 were examined. 2. The biosynthesis of the wall polymers poly(glycerol phosphate glucose) and poly(glycerol phosphate) by membrane-bound enzymes is strongly dependent on Mg(2+), showing maximum activity at 10-15mm-Mg(2+). 3. When the membrane is in close contact with the cell wall and membrane teichoic acid, the enzyme systems are insensitive to added Mg(2+). The membrane appears to interact preferentially with the constant concentration of Mg(2+) that is bound to the phosphate groups of teichoic acid in the wall and on the membrane. When the wall is removed by the action of lysozyme the enzymes again become dependent on an external supply of Mg(2+). 4. A membrane preparation that retained its membrane teichoic acid was still dependent on Mg(2+) in solution, but the dependence was damped so that the enzymes exhibited near-maximal activity over a much greater range of concentrations of added Mg(2+); this preparation contained Mg(2+) bound to the membrane teichoic acid. The behaviour of this preparation could be reproduced by binding membrane teichoic acid to membranes in the presence of Mg(2+). Addition of membrane teichoic acid to reaction mixtures also had a damping effect on the Mg(2+) requirement of the enzymes, since the added polymer interacted rapidly with the membrane. 5. Other phosphate polymers behaved in a qualitatively similar way to membrane teichoic acid on addition to reaction mixtures. 6. It is concluded that in whole cells the ordered array of anionic wall and membrane teichoic acids provides a constant reservoir of bound bivalent cations with which the membrane preferentially interacts. The membrane teichoic acid is the component of the system which mediates the interaction of bound cations with the membrane. The anionic polymers in the wall scavenge cations from the medium and maintain a constant environment for the membrane teichoic acid. Thus a function of wall and membrane teichoic acids is to maintain the correct ionic environment for cation-dependent membrane systems.  相似文献   

10.
A nutritional mutant of Staphylococcus aureus H has been isolated and grown in media in which the only amino acids are arginine, cysteine, glutamic acid and proline. Walls of the bacteria grown in such media in continuous culture under potassium limitation differ in composition from walls of the bacteria grown in batch culture in rich nutrient broth in that they contain less glycine, the peptidoglycan component is less highly cross-linked and the teichoic acid component contains a reduced proportion of N-acetylglucosaminyl substituents. Walls of the potassium-limited bacteria retain the ability to bind bacteriophage 52a but are more susceptible to the action of lytic peptidases than are wall samples in which the peptidoglycan is more highly cross-linked. Teichoic acid was present in walls of the bacteria grown under phosphate limitation in the defined medium and these walls were also able to absorb bacteriophage 52a.  相似文献   

11.
The choline-containing teichoic acids of pneumococci can be modified by biosynthetic replacement of the choline residues with certain structural analogues, such as ethanolamine (EA) or the N-monomethyl- (MEA) and N-dimethyl- (DEA) amino derivatives of ethanolamine. Cells containing such analogues in their teichoic acids develop pleiomorphic alterations in several physiological properties, which include resistance to detergent-induced lysis and inhibition of cell separation (chain formation). We report here the results of physiological studies on the mechanism of these two phenomena. Our results are summarized in the following: (a) Pneumococci grown on various amino alcohols produce cell walls of identical amino sugar and amino acid composition. (b) Both choline- and EA-containing teichoic acids seem to follow the same conservative pattern of segregation during growth and cell division. (c) Lysis sensitivity of pneumococci requires the juxtaposition of lysissensitive (choline-containing) cell walls and endogenous autolysin at the cell wall growth zone. (d) Upon readdition of choline to ethanolamine-containing cells, lysis sensitivity and catalytically active (C-type) autolysin reappear in the bacteria with the same kinetics. (e) The chains of EA-grown pneumococci contain fully compartmentalized cells and normal cross walls.  相似文献   

12.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.  相似文献   

13.
Streptococcus oralis ATCC 35037 took up radioactively labeled choline from growth medium. Most of the choline (80 to 90%) was incorporated into the cell wall teichoic acid, and about 10% was localized in the plasma membrane. While cells grew in choline-free medium, they did so at slow rates and produced cell walls with greatly reduced amounts of phosphate and no detectable choline. Cells grown in choline-free medium had grossly abnormal shape and size. Both biochemical and morphological abnormalities were reversible by addition of choline to the medium.  相似文献   

14.
The role of cytidine diphosphate (CDP)-glycerol in gram-positive bacteria whose walls lack poly(glycerol phosphate) was investigated. Membrane preparations from Staphylococcus aureus H, Bacillus subtilis W23, and Micrococcus sp. 2102 catalyzed the incorporation of glycerol phosphate residues from radioactive CDP-glycerol into a water-soluble polymer. In toluenized cells of Micrococcus sp. 2102, some of this product became linked to the wall. In each case, maximum incorporation of glycerol phosphate residues required the presence of the nucleotide precursors of wall teichoic acid and of uridine diphosphate-N-acetylglucosamine. In membrane preparations capable of synthesizing peptidoglycan, vancomycin caused a decrease in the incorporation of isotope from CDP-glycerol into polymer. Synthesis of the poly (glycerol phosphate) unit thus depended at an early stage on the concomitant synthesis of wall teichoic acid and later on the synthesis of peptidoglycan. It is concluded that CDP-glycerol is the biosynthetic precursor of the tri(glycerol phosphate) linkage unit between teichoic acid and peptidoglycan that has recently been characterized in S. aureus H.  相似文献   

15.
Bacterial cell wall homeostasis is an intricately coordinated process that ensures that envelope integrity is maintained during cell growth and division, but can also adequately respond to growth‐limiting conditions such as phosphate starvation. In Bacillus subtilis, biosynthesis of the two major cell wall components, peptidoglycan and anionic polymers, is controlled by a pair of paralogous two‐component systems, WalRK and PhoPR respectively. Favorable growth conditions allow for a fast rate of cell wall biosynthesis (WalRK‐ON) and the incorporation of the phosphate‐containing anionic polymer teichoic acids (PhoPR‐OFF). In contrast, growth‐restricted cells under phosphate‐limiting conditions reduce the incorporation of peptidoglycan building blocks (WalRK‐OFF) and switch from the phosphate‐containing teichoic acids to the phosphate‐free anionic polymer teichuronic acid (PhoPR‐ON). Botella et al. (2014) deepen our knowledge on the PhoPR system by identifying one signal that is perceived by its histidine kinase PhoR. In fast‐growing cells, intracellular intermediates of teichoic acid biosynthesis are sensed by the cytoplasmic Per‐Arnt‐Sim domain as an indicator of favorable conditions, thereby inhibiting the autokinase activity of PhoR and keeping the system inactive. Depletion of teichoic acid building blocks under phosphate‐limiting conditions relieves this inhibition, activates PhoPR‐dependent signal transduction and hence the switch to teichuronic acid biosynthesis.  相似文献   

16.
The cell walls of Microbispora mesophila strain Ac-1953T (the family Streptosporangiaceae) and Thermobifida fusca Ac-1952T (the family Nocardiopsiceae) were found to contain teichoic acids of a poly(glycerol phosphate) nature. The teichoic acid of M. mesophila (formerly Thermomonospora mesophila) represents a poly(glycerol phosphate) containing 5% of substituent 2-acetamido-2-deoxy-alpha-galactosaminyl residues. The teichoic acid of such kind was found in actinomycetes for the first time. The cell wall of T. fusca (formerly Thermonospora fusca) contains two teichoic acids, namely, unsubstituted 1,3-poly(glycerol phosphate) and beta-glucosylated 1,3-poly(glycerol phosphate).  相似文献   

17.
1. Incubation of Bacillus subtilis 168 trp in a glucose-amino acids-salts medium lacking tryptophan leads to an inhibition of cellular growth without affecting cell-wall synthesis. The cell walls increased approximately two- to three-fold in thickness and at the same time the amount of mucopeptide in the cells measured chemically increased to about the same extent. 2. Synthesis of mucopeptide and teichoic acid as measured by the extent of incorporation of radioactivity continued linearly for approximately 1h and then stopped. No reason was found for the strictly limited synthesis of the wall polymers. 3. The initial rates of incorporation of [(32)P]P(i) or [(3)H]alanine into teichoic acid and of (3)H-labelled amino acids into mucopeptide were not appreciably inhibited by the addition of chloramphenicol to the glucose-amino acids-salts medium. 4. There was no selective turnover of the mucopeptide synthesized by the cells in a medium lacking tryptophan on resumption of growth in a complete medium. 5. Wall synthesis taking place during the thickening process was similar to normal wall synthesis proceeding in growing cells. Walls of different thicknesses prepared from cells incubated for various times in incomplete medium did not differ qualitatively in composition. The products of autolysis of thickened walls were isolated and the analyses indicated a close similarity in the details of their mucopeptide structure compared with the mucopeptide of cells growing in the exponential phase.  相似文献   

18.
Choline-containing teichoic acid seems to be essential for the adsorption of bacteriophage Dp-1 to pneumococci. This conclusion is based on the following observations: In contrast to pneumococci grown in choline-containing medium, cells grown in medium containing ethanolamine or other submethylated aminoalcohols instead of choline were found to be resistant to infection by Dp-1. Live choline-grown bacteria and heat- or UV-inactivated cells and purified cell walls prepared from these cells were capable of adsorbing phage Dp-1; ethanolamine-grown pneumococci or cell wall preparations were unable to do so. Adsorption of Dp-1 to choline-containing cell walls was competitively inhibited by phosphorylcholine and by several choline-containing soluble cell surface components, such as the Forssman antigen and the teichoic acid-glycan complexes formed by autolytic cell wall degradation. Cell walls prepared from pneumococci grown in ethanolamine or phosphorylethanolamine were inactive. Electron microscopic studies with pneumococci that had segments of choline-containing cell wall material amid ethanolamine-containing regions indicated that the Dp-1 phage particles adsorbed exclusively to the choline-containing surface areas. We suggest that the choline residues of the pneumococcal teichoic acid are essential components of the Dp-1 phage receptors in this bacterium.  相似文献   

19.
We report the nucleotide sequence and the characterization of the Bacillus subtilis tagGH operon. The latter is controlled by a σA-dependent promoter and situated in the 308° chromosomal region which contains genes involved in teichoic acid biosynthesis. TagG is a hydrophobic 32.2 kDa protein which resembles integral membrane proteins belonging to polymerexport systems of Gram-negative bacteria. Gene tagH encodes a 59.9 kDa protein whose N-moiety contains the ATP-binding motif and shares extensive homology with a number of ATP-binding proteins, particularly with those associated with the transport of capsular polysaccharides and O-antigens. That the tagGH operon is essential for cell growth was established by the failure to inactivate tagG and the 5′ -moiety of tagH by insertional mutagenesis. During limited tagGH expression, cells exhibited a cocoid morphology while their walls contained reduced amounts of phosphate as well as galactosamine. These observations, revealing impaired metabolism of both wall teichoic acids of B. subtilis 168, i.e. poly(glycerol phosphate), and poly(glucose galactosamine phosphate), combined with sequence homologies, suggest that TagG and TagH are involved in the translocation through the cytoplasmic membrane of the latter teichoic acids or their precursors.  相似文献   

20.
Structural differentiation of the Bacillus subtilis 168 cell wall.   总被引:2,自引:0,他引:2       下载免费PDF全文
Exponential-growth-phase cultures of Bacillus subtilis 168 were probed with polycationized ferritin (PCF) or concanavalin A (localized by the addition of horseradish peroxidase conjugated to colloidal gold) to distinguish surface anionic sites and teichoic acid polymers, respectively. Isolated cell walls, lysozyme-digested cell walls, and cell walls treated with mild alkali to remove teichoic acid were also treated with PCF. After labelling, whole cells and walls were processed for electron microscopy by freeze-substitution. Thin sections of untreated cells showed a triphasic, fibrous wall extending more than 30 nm beyond the cytoplasmic membrane. Measurements of wall thickness indicated that the wall was thicker at locations adjacent to septa and at pole-cylinder junctions (P < 0.001). Labelling studies showed that at saturating concentrations the PCF probe labelled the outermost limit of the cell wall, completely surrounding individual cells. However, at limiting PCF concentrations, labelling was observed at only discrete cell surface locations adjacent to or overlying septa and at the junction between pole and cylinder. Labelling was rarely observed along the cell cylinder or directly over the poles. Cells did not label along the cylindrical wall until there was visible evidence of a developing septum. Identical labelling patterns were observed by using concanavalin A-horseradish peroxidase-colloidal gold. Neither probe appeared to penetrate between the fibers of the wall. We suggest that the fibrous appearance of the wall seen in freeze-substituted cells reflects turnover of the wall matrix, that the specificity of labelling to discrete sites on the cell surface is indicative of regions of extreme hydrolytic activity in which alpha-glucose residues of the wall teichoic acids and electronegative sites (contributed by phosphate and carboxyl groups of the teichoic acids and carboxyl groups of the peptidoglycan polymers) are more readily accessible to our probes, and that the wall of exponentially growing B. subtilis cells contains regions of structural differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号