首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
An avirulent, field-derived isolate of equine infectious anemia virus (EIAV), designated MA-1, was molecularly cloned, and the complete nucleotide sequence was determined for the 3' half of the viral genome. Comparisons between MA-1 and the prototype Wyoming strain of EIAV identified a 66-nucleotide stretch between CAAT (-91) and TATAA (-25) in the U3 region of the long terminal repeat, where sequence divergence was as high as 39.3%. The polymerase chain reaction was used to amplify and clone long terminal repeat sequences from Th-1, the in vivo parental stock of MA-1. Results indicated that the nucleotide sequences of MA-1 and Th-1 clones were less variable than was observed between MA-1 and Wyoming. However, MA-1 and Th-1 markedly differed in the types of enhancer sequences located in the hypervariable region. These results suggest that variation in lentivirus regulatory sequences may be important in EIAV host cell tropism and pathogenesis.  相似文献   

4.
5.
6.
7.
Adsorption and penetration of retroviruses into eucaryotic cells is mediated by retroviral envelope glycoproteins interacting with host receptors. Recombinant avian leukosis viruses (ALVs) differing only in envelope determinants that interact with host receptors for subgroup A or E ALVs have been found to have unexpectedly distinctive patterns of tissue-specific replication. Recombinants of both subgroups were highly expressed in bursal lymphocytes as well as in cultured chicken embryo fibroblasts. In contrast, the subgroup A but not subgroup E host range allowed high levels of expression in skeletal muscle, while subgroup E but not subgroup A envelope glycoproteins permitted efficient replication in the thymus. A subgroup B virus (RAV-2), like the subgroup E viruses, demonstrated a distinct bursal and thymic tropism, further supporting the theory that genes encoding receptors for subgroup B and E viruses are allelic. The source of long terminal repeats (LTRs) or adjacent sequences also influenced tissue-specific replication, with the LTRs from endogenous virus RAV-0 supporting efficient replication in the bursa and thymus but not in skeletal muscle. These results indicate that ALV env and LTR regions are responsible for unexpectedly distinctive tissue tropisms.  相似文献   

8.
9.
10.
Lentiviruses exist in vivo as a population of related, nonidentical genotypes, commonly referred to as quasispecies. The quasispecies structure is characteristic of complex adaptive systems and contributes to the high rate of evolution in lentiviruses that confounds efforts to develop effective vaccines and antiviral therapies. Here, we describe analyses of genetic data from longitudinal studies of genetic variation in a lentivirus regulatory protein, Rev, over the course of disease in ponies experimentally infected with equine infectious anemia virus. As observed with other lentivirus data, the Rev variants exhibited a quasispecies character. Phylogenetic and partition analyses suggested that the Rev quasispecies comprised two distinct subpopulations that coexisted during infection. One subpopulation appeared to accumulate changes in a linear, time-dependent manner, while the other evolved radially from a common variant. Over time, the two subpopulations cycled in predominance coincident with changes in the disease state, suggesting that the two groups differed in selective advantage. Transient expression assays indicated the two populations differed significantly in Rev nuclear export activity. Chimeric proviral clones containing Rev genotypes representative of each population differed in rate and overall level of virus replication in vitro. The coexistence of genetically distinct viral subpopulations that differ in phenotype provides great adaptability to environmental changes within the infected host. A quasispecies model with multiple subpopulations may provide additional insight into the nature of lentivirus reservoirs and the evolution of antigenic and drug-resistant variants.  相似文献   

11.
Regulation of equine infectious anemia virus expression   总被引:5,自引:0,他引:5  
Equine infectious anemia virus (EIAV) is an ungulate lentivirus that is related to human immunodeficiency virus (HIV). Much of the understanding of lentiviral gene regulation comes from studies using HIV. HIV studies have provided insights into molecular regulation of EIAV expression; however, much of the regulation of EIAV expression stands in stark contrast to that of HIV. This review provides an overview of the current state of knowledge of EIAV regulation by comparing and contrasting EIAV gene regulation to HIV. The role of EIAV gene regulation is discussed in relation to EIAV pathogenesis.  相似文献   

12.
13.
The highly oncogenic erythroleukemia-inducing Friend mink cell focus-inducing (MCF) virus was molecularly cloned in phage lambda gtWES.lambda B, and the DNA sequences of the env gene and the long terminal repeat were determined. The nucleotide sequences of Friend MCF virus and Friend spleen focus-forming virus were quite homologous, supporting the hypothesis that Friend spleen focus-forming virus might be generated via Friend MCF virus from an ecotropic Friend virus mainly by some deletions. Despite their different pathogenicity, the nucleotide sequences of the env gene of Friend MCF virus and Moloney MCF virus were quite homologous, suggesting that the putative parent sequence for the generation of both MCF viruses and the recombinational mechanism for their generation might be the same. We compare the amino acid sequences in lymphoid leukemia-inducing ecotropic Moloney virus and Moloney MCF virus, and erythroblastic leukemia-inducing ecotropic Friend virus, Friend-MCF virus, and Friend spleen focus-forming virus. The Friend MCF virus long terminal repeat was found to be 550 base pairs long. This contained two copies of the 39-base-pair tandem repeat, whereas the spleen focus-forming virus genome contained a single copy of the same sequence.  相似文献   

14.
Structural proteins of equine infectious anemia virus.   总被引:1,自引:2,他引:1       下载免费PDF全文
Equine infectious anemia virus was found to be comprised of fourteen polypeptides of molecular weight ranging from 10,000 to 79,000. Eighty percent of the virion protein was accounted for by five polypeptides, including two non-glycosylated components (p29 and p13) comprising one-half of the virion protein and three glycoproteins (gp77/79, gp64, and gp40).  相似文献   

15.
An infectious NZB xenotropic murine leukemia virus (MuLV) provirus (NZB was molecularly cloned from the Hirt supernatant of NZB-IU-6-infected mink cells, and the nucleotide sequence of its env gene and long terminal repeat (LTR) was determined. The partial nucleotide sequence previously reported for the env gene of NFS-Th-1 xenotropic proviral DNA (Repaske, et al., J. Virol. 46:204-211, 1983) is identical to that of the infectious NZB xenotropic MuLV DNA reported here. Alignment of nucleotide or deduced amino acid sequences, or both, of xenotropic, mink cell focus-forming, and ecotropic MuLV proviral DNAs in the env region identified sequence differences among the three host range classes of C-type MuLVs. Major differences were confined to the 5' half of env; a high degree of homology was found among the three classes of MuLVs in the 3' half of env. Alignment of the nucleotide sequence of the LTR of NZB xenotropic MuLV with those of the LTRs of NFS-Th-1 xenotropic, mink cell focus-forming, and ecotropic MuLVs revealed extensive homology between the LTRs of xenotropic and MCF247 MuLVs. An inserted 6-base-pair repeat 5' to the TATA box was a unique feature of both NZB and NFS-Th-1 xenotropic LTRs.  相似文献   

16.
17.
18.
Rauscher and Friend spleen focus-forming viruses (R- and F-SFFVs) cause similar progressive erythroleukemias dependent upon a virus-encoded membrane glycoprotein. Moreover, these SFFV glycoproteins are immunologically related to each other and to the recombinant-type glycoproteins encoded by the env genes of dual tropic murine leukemia viruses. To better understand these diseases and the viral origins, we isolated a pathogenically active molecular clone of R-SFFV proviral DNA, sequenced its 3'-terminal 2,163-base-pair (bp) region, and compared these sequences with previously determined sequences of F-SFFV. The 516-bp R-SFFV long terminal repeat is highly homologous to those of F-SFFV and Friend murine leukemia virus, although only the latter contains a 65-bp direct repeat in its U3 region. The env gene of R-SFFV encodes a glycoprotein with 408 amino acids that is identical in its basic domain organization to the glycoprotein of F-SFFV. Thus, the junctions between the dual tropic-related and ecotropic sequences occur at the same nucleotide, and both SFFV env genes contain identical 585-bp deletions in their ecotropic domains and single-bp insertions which cause premature terminations at the same amino acid in their ecotropic p15E domains. Consistent with their independent origins, however, the env sequences of R- and F-SFFV are distinctive in both their 5' dual tropic-related and 3' ecotropic-related domains. Furthermore, there are several consistent amino acid differences between the polycythemic F-SFFV sequences and the anemia-inducing R-SFFV sequence. The striking similarities of the independently formed F- and R-SFFV env genes imply that all of the glycoprotein domains arranged in a precise organization may be required for its leukemogenic activity  相似文献   

19.
20.
The Gag proteins of a number of different retroviruses contain late or L domains that promote the release of virions from the plasma membrane. Three types of L domains have been identified to date: Pro-Thr-Ala-Pro (PTAP), Pro-Pro-X-Tyr, and Tyr-Pro-Asp-Leu. It has previously been demonstrated that overexpression of the N-terminal, E2-like domain of the endosomal sorting factor TSG101 (TSG-5') inhibits human immunodeficiency virus type 1 (HIV-1) release but does not affect the release of the PPPY-containing retrovirus murine leukemia virus (MLV), whereas overexpression of the C-terminal portion of TSG101 (TSG-3') potently disrupts both HIV-1 and MLV budding. In addition, it has been reported that, while the release of a number of retroviruses is disrupted by proteasome inhibitors, equine infectious anemia virus (EIAV) budding is not affected by these agents. In this study, we tested the ability of TSG-5', TSG-3', and full-length TSG101 (TSG-F) overexpression, a dominant negative form of the AAA ATPase Vps4, and proteasome inhibitors to disrupt the budding of EIAV particles bearing each of the three types of L domain. The results indicate that (i) inhibition by TSG-5' correlates with dependence on PTAP; (ii) the release of wild-type EIAV (EIAV/WT) is insensitive to TSG-3', whereas this C-terminal TSG101 fragment potently impairs the budding of EIAV when it is rendered PTAP or PPPY dependent; (iii) budding of all EIAV clones is blocked by dominant negative Vps4; and (iv) EIAV/WT release is not impaired by proteasome inhibitors, while EIAV/PTAP and EIAV/PPPY release is strongly disrupted by these compounds. These findings highlight intriguing similarities and differences in host factor utilization by retroviral L domains and suggest that the insensitivity of EIAV to proteasome inhibitors is conferred by the L domain itself and not by determinants in Gag outside the L domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号