首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both homo- and hetero-dimers of ErbB receptor tyrosine kinases mediate signaling by a large group of epidermal growth factor (EGF)-like ligands. However, some ligands are more potent than others, although they bind to the same direct receptor. In addition, signaling by receptor heterodimers is superior to homodimers. We addressed the mechanism underlying these two features of signal tuning by using three ligands: EGF; transforming growth factor alpha (TGFalpha); and their chimera, denoted E4T, which act on cells singly expressing ErbB-1 as a weak, a strong, and a very strong agonist, respectively. Co-expression of ErbB-2, a developmentally important co-receptor whose expression is frequently elevated in human cancers, specifically potentiated EGF signaling to the level achieved by TGFalpha, an effect that was partially mimicked by ErbB-3. Analysis of the mechanism underlying this trans-potentiation implied that EGF-driven homodimers of ErbB-1 are destined for intracellular degradation, whereas the corresponding heterodimers with ErbB-2 or with ErbB-3, dissociate in the early endosome. As a consequence, in the presence of either co-receptor, ErbB-1 is recycled to the cell surface and its signaling is enhanced. This latter route is followed by TGFalpha-driven homodimers of ErbB-1, and also by E4T-bound receptors, whose signaling is further enhanced by repeated cycles of binding and dissociation from the receptors. We conclude that alternative endocytic routes of homo- and hetero-dimeric receptor complexes may contribute to tuning and diversification of signal transduction. In addition, the ability of ErbB-2 to shunt ligand-activated receptors to recycling may explain, in part, its oncogenic potential.  相似文献   

2.
Two-pore channels form homo- and heterodimers   总被引:1,自引:0,他引:1  
Two-pore channels (TPCs) have been recently identified as NAADP-regulated Ca(2+) release channels, which are localized on the endolysosomal system. TPCs have a 12-transmembrane domain (TMD) structure and are evolutionary intermediates between the 24-TMD α-subunits of Na(+) or Ca(2+) channels and the transient receptor potential channel superfamily, which have six TMDs in a single subunit and form tetramers with 24 TMDs as active channels. Based on this relationship, it is predicted that TPCs dimerize to form functional channels, but the dimerization of human TPCs has so far not been studied. Using co-immunoprecipitation studies and a mass spectroscopic analysis of the immunocomplex, we show the presence of homo- and heteromeric complexes for human TPC1 and TPC2. Despite their largely distinct localization, we identified a discrete number of endosomes that coexpressed TPC1 and TPC2. Homo- and heteromerization were confirmed by a FRET study, showing that both proteins interacted in a rotational (N- to C-terminal/head-to-tail) symmetry. This is the first report describing the presence of homomultimeric TPC1 channels and the first study showing that TPCs are capable of forming heteromers.  相似文献   

3.
A significant number of G protein-coupled receptors are shown to form homo- or heterodimers/oligomers, and oligomerization of GPCRs may be a quite general phenomenon. We have here explored the possibility that the two closely related human melanocortin receptor 1 (MC(1)R) and melanocortin receptor 3 (MC(3)R) form dimers. Using bioluminescence resonance energy transfer (BRET(2)) we demonstrate that MC(1) and MC(3)Rs form homo- and heterodimers, when expressed in Cos-7 cells. Treatment with agonist, partial agonist or antagonists did not modify the BRET(2) signal for any of the receptor pairs studied, suggesting that the dimerization is not regulated by ligand binding. Rather our results indicate that melanocortin receptors exist as constitutively pre-formed dimers.  相似文献   

4.
The existence of receptor dimers has been proposed for several G protein-coupled receptors. However, the question of whether G protein-coupled receptor dimers are necessary for activating or modulating normal receptor function is unclear. We address this question with somatostatin receptors (SSTRs) of which there are five distinct subtypes. By using transfected mutant and wild type receptors, as well as endogenous receptors, we provide pharmacological, biochemical, and physical evidence, based on fluorescence resonance energy transfer analysis, that activation by ligand induces SSTR dimerization, both homo- and heterodimerization with other members of the SSTR family, and that dimerization alters the functional properties of the receptor such as ligand binding affinity and agonist-induced receptor internalization and up-regulation. Double label confocal fluorescence microscopy showed that when SSTR1 and SSTR5 subtypes were coexpressed in Chinese hamster ovary-K1 cells and treated with agonist they underwent internalization and were colocalized in cytoplasmic vesicles. SSTR5 formed heterodimers with SSTR1 but not with SSTR4 suggesting that heterodimerization is a specific process that is restricted to some but not all receptor subtype combinations. Direct protein interaction between different members of the SSTR subfamily defines a new level of molecular cross-talk between subtypes of the SSTR and possibly related receptor families.  相似文献   

5.
Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers   总被引:5,自引:0,他引:5  
Vascular endothelial growth factor (VEGF-A) exerts its effects through receptor tyrosine kinases VEGF receptor-1 (VEGFR-1) and VEGFR-2, which are expressed on most endothelial cell types in vitro and in vivo. We have examined VEGF-A-induced signal transduction in porcine aortic endothelial (PAE) cells individually expressing VEGFR-1 or VEGFR-2, and cells co-expressing both receptor types. We show that VEGF-A-stimulated PAE cells co-expressing VEGFR-1 and -2 contain receptor heterodimers. VEGF-A-stimulation of all three cell lines (expressing VEGFR-1, -2 and -1/2) resulted in signal transduction with different efficiencies. Thus, tyrosine phosphorylation of phospholipase Cgamma, and accumulation of inositol polyphosphates were efficiently transduced in the VEGFR-1/2 cells whereas cells expressing VEGFR-1 responded poorly in these assays. In contrast, VEGF-A-induced activation of phosphoinositide 3-kinase and induction of Ca2+ fluxes were transduced well by VEGFR-1 and VEGFR-2 homo- and heterodimers. The pattern of Ca2+ fluxes was unique for each type of VEGF receptor dimer. Our data show that signal transduction induced by VEGF-A is transduced in distinct manners by homo- and heterodimers of VEGF receptors.  相似文献   

6.
微核糖核酸(microRNAs,miRNAs)是广泛存在于真核生物中的一类短小的、不编码蛋白质的RNA家族,由18-25个核苷酸组成的单链RNA。研究表明microRNAs对肿瘤的发生发展具有重要的调节作用。肿瘤血管生成是实体瘤侵袭转移的关键步骤,抗肿瘤血管生成的治疗已成为当前研究的焦点,已有研究表明,microRNAs参与肿瘤血管生成的调节作用,通过对肿瘤血管生成相关因子的调控,影响肿瘤生成。  相似文献   

7.
微核糖核酸(microRNAs,miRNAs)是广泛存在于真核生物中的一类短小的、不编码蛋白质的RNA家族,由18-25个核苷酸组成的单链RNA。研究表明microRNAs对肿瘤的发生发展具有重要的调节作用。肿瘤血管生成是实体瘤侵袭转移的关键步骤,抗肿瘤血管生成的治疗已成为当前研究的焦点,已有研究表明,microRNAs参与肿瘤血管生成的调节作用,通过对肿瘤血管生成相关因子的调控,影响肿瘤生成。  相似文献   

8.
Low oxygen tension influences tumor progression by enhancing angiogenesis; and histone deacetylases (HDAC) are implicated in alteration of chromatin assembly and tumorigenesis. Here we show induction of HDAC under hypoxia and elucidate a role for HDAC in the regulation of hypoxia-induced angiogenesis. Overexpressed wild-type HDAC1 downregulated expression of p53 and von Hippel-Lindau tumor suppressor genes and stimulated angiogenesis of human endothelial cells. A specific HDAC inhibitor, trichostatin A (TSA), upregulated p53 and von Hippel-Lindau expression and downregulated hypoxia-inducible factor-1alpha and vascular endothelial growth factor. TSA also blocked angiogenesis in vitro and in vivo. TSA specifically inhibited hypoxia-induced angiogenesis in the Lewis lung carcinoma model. These results indicate that hypoxia enhances HDAC function and that HDAC is closely involved in angiogenesis through suppression of hypoxia-responsive tumor suppressor genes.  相似文献   

9.
The Notch signaling pathway is conserved in vertebrates and invertebrates and is involved in many developmental processes. Notch receptors and ligands are expressed on the cell surface enabling interactions between adjacent cells upon receptor-ligand binding. Notch signaling molecules have an important well-documented role in vascular development, differentiation, proliferation, apoptosis and tumorigenesis. Recently, several groups have identified the importance of Notch signaling in tumor angiogenesis. Notch activity increases specifically in tumor endothelium and in various tumors types and, in some studies, Notch signaling suppresses angiogenic processes. Because the Notch signaling pathway can mediate communication between various cell types in the tumor microenvironment, interactions between tumor cells and endothelial cells might promote angiogenesis, therefore targeting the Notch pathway might provide a novel strategy for anti-angiogenic therapies. Here, we discuss recent insights of Notch signaling in tumor angiogenesis.  相似文献   

10.
A highly specific method for the dissociation of protein dimers has been developed. The method involves exposure of the dimers to free leucine at a concentration ranging between 3 and 10 mM. Using this method it has been possible to dissociate goat uterine oestrogen receptor homodimers, heterodimers formed between the non-activated oestrogen receptor (naER) and the oestrogen receptor activation factor (E-RAF) of the goat uterus, c-jun homodimers derived from bovine bone marrow and also glucocorticoid receptor homodimers isolated from rat liver cytosol. The pattern of dimer dissociation by leucine clearly differentiates two classes of proteins. The first is represented by steroid hormone receptors where dimerization is apparently contributed by both coiled-coil dimerization interfaces and the conserved heptad repeats of leucine. The second is represented by oncoproteins like c-fos and c-jun which dimerize through the exclusive involvement of leucine zippers. The patterns of dissociation of these two groups of proteins from the concerned affinity columns are distinctly different. This indicates a possibility that the elution pattern may be used as a yardstick to determine whether two proteins dimerize through the exclusive involvement of leucine zippers or whether coiled-coil interfaces are also involved in the dimerization process.  相似文献   

11.
Hayashi T  Rumbaugh G  Huganir RL 《Neuron》2005,47(5):709-723
Modification of AMPA receptor function is a major mechanism for the regulation of synaptic transmission and underlies several forms of synaptic plasticity. Post-translational palmitoylation is a reversible modification that regulates localization of many proteins. Here, we report that palmitoylation of the AMPA receptor regulates receptor trafficking. All AMPA receptor subunits are palmitoylated on two cysteine residues in their transmembrane domain (TMD) 2 and in their C-terminal region. Palmitoylation on TMD 2 is upregulated by the palmitoyl acyl transferase GODZ and leads to an accumulation of the receptor in the Golgi and a reduction of receptor surface expression. C-terminal palmitoylation decreases interaction of the AMPA receptor with the 4.1N protein and regulates AMPA- and NMDA-induced AMPA receptor internalization. Moreover, depalmitoylation of the receptor is regulated by activation of glutamate receptors. These data suggest that regulated palmitoylation of AMPA receptor subunits modulates receptor trafficking and may be important for synaptic plasticity.  相似文献   

12.
Here we report that ferricytochrome c (cyt c(3+)) induces oxidation of hydroethidine (HE) and mitochondria-targeted hydroethidine (Mito-HE or MitoSOX Red) forming highly characteristic homo- and heterodimeric products. Using an HPLC-electrochemical (EC) method, several products were detected from cyt c(3+)-catalyzed oxidation of HE and Mito-HE and characterized by mass spectrometry and NMR techniques as follows: homodimers (HE-HE, E(+)-E(+), Mito-HE-Mito-HE, and Mito-E(+)-Mito-E(+)) and heterodimers (HE-E(+) and Mito-HE-Mito-E(+)), as well as the monomeric ethidium (E(+)) and mito-ethidium (Mito-E(+)). Similar products were detected when HE and Mito-HE were incubated with mitochondria. In contrast, mitochondria depleted of cyt c(3+) were much less effective in oxidizing HE or Mito-HE to corresponding dimeric products. Unlike E(+) or Mito-E(+), the dimeric analogs (E(+)-E(+) and Mito-E(+)-Mito-E(+)) were not fluorescent. Superoxide (O(2)(*-)) or Fremy's salt reacts with Mito-HE to form a product, 2-hydroxy-mito-ethidium (2-OH-Mito-E(+)) that was detected by HPLC. We conclude that HPLC-EC but not the confocal and fluorescence microscopy is a viable technique for measuring superoxide and cyt c(3+)-dependent oxidation products of HE and Mito-HE in cells. Superoxide detection using HE and Mito-HE could be severely compromised due to their propensity to undergo oxidation.  相似文献   

13.
ErbB4 is a member of the epidermal growth factor receptor(EGFR) family of tyrosine kinases, which includes EGFR/ErbB1, ErbB2/HER2/Neu, and ErbB3/HER3. These receptors play important roles both in normal development and in neoplasia. For example, deregulated signaling by ErbB1 and ErbB2 is observed in many human malignancies. In contrast, the roles that ErbB4 plays in tumorigenesis and normal biological processes have not been clearly defined. To identify the biological responses that are coupled to ErbB4, we have constructed three constitutively active ErbB4 mutants. Unlike a constitutively active ErbB2 mutant, the ErbB4 mutants are not coupled to increased cell proliferation, loss of contact inhibition, or anchorage independence in a rodent fibroblast cell line. This suggests that ErbB2 and ErbB4 may play distinct roles in tumorigenesis in vivo.  相似文献   

14.
Homo- and heterodimerization have emerged as prominent features of G-protein-coupled receptors with possible impact on the regulation of their activity. Using a sensitive bioluminescence resonance energy transfer system, we investigated the formation of CXCR4 and CCR2 chemokine receptor dimers. We found that both receptors exist as constitutive homo- and heterodimers and that ligands induce conformational changes within the pre-formed dimers without promoting receptor dimer formation or disassembly. Ligands with different intrinsic efficacies yielded distinct bioluminescence resonance energy transfer modulations, indicating the stabilization of distinct receptor conformations. We also found that peptides derived from the transmembrane domains of CXCR4 inhibited activation of this receptor by blocking the ligand-induced conformational transitions of the dimer. Taken together, our data support a model in which chemokine receptor homo- and heterodimers form spontaneously and respond to ligand binding as units that undergo conformational changes involving both protomers even when only one of the two ligand binding sites is occupied.  相似文献   

15.
Studies on physiological modulation of intercellular communication mediated by protein kinases are often complicated by the fact that cells express multiple gap junction proteins (connexins; Cx). Changes in cell coupling can be masked by simultaneous opposite regulation of the gap junction channel types expressed. We have examined the effects of activators and inhibitors of protein kinase A (PKA), PKC, and PKG on permeability and single channel conductance of gap junction channels composed of Cx45, Cx43, or Cx26 subunits. To allow direct comparison between these Cx, SKHep1 cells, which endogenously express Cx45, were stably transfected with cDNAs coding for Cx43 or Cx26. Under control conditions, the distinct types of gap junction channels could be distinguished on the basis of their permeability and single channel properties. Under various phosphorylating conditions, these channels behaved differently. Whereas agonists/antagonist of PKA did not affect permeability and conductance of all gap junction channels, variable changes were observed under PKC stimulation. Cx45 channels exhibited an additional conductance state, the detection of the smaller conductance states of Cx43 channels was favored, and Cx26 channels were less often observed. In contrast to the other kinases, agonists/antagonist of PKG affected permeability and conductance of Cx43 gap junction channels only. Taken together, these results show that distinct types of gap junction channels are differentially regulated by similar phosphorylating conditions. This differential regulation may be of physiological importance during modulation of cell-to-cell communication of more complex cell systems.  相似文献   

16.
Recent studies have shown that macrophages play an important part in both tumor initiation and various key steps in growth and metastasis. These cells show a remarkable degree of plasticity during tumor development with a "switch" in macrophage phenotypes occurring during the course of tumor progression. During chronic inflammation they appear to predispose a given tissue to tumor initiation by the release of factors that promote neoplastic transformation. Following this, their phenotype shifts more toward one that is immunosuppressive and supports tumor growth, angiogenesis, and metastasis. In this review, we discuss the evidence for this plasticity of macrophage functions, the specific signaling mechanisms that may be regulating it, and the new targets for anticancer therapies highlighted by these findings.  相似文献   

17.
The Roadblock/LC7 class of light chains associate with the intermediate chains at the base of the soluble dynein particle. In mammals, there are two Roadblock isoforms (Robl1 and Robl2), one of which (Robl2) is differentially expressed in a tissue-dependent manner and is especially prominent in testis. Here we define the alpha helical content of Robl and demonstrate using both the yeast two-hybrid system and in vitro biochemistry that Robl1 and Robl2 are capable of forming homo- and heterodimers. This is the first report of heterodimer formation by any cytoplasmic dynein component, and it further enlarges the number of potential cytoplasmic dynein isoforms available for binding specific cellular cargoes. In addition, we have generated an antibody that specifically recognizes Robl light chains and shows a 5-10 fold preference for Robl2 over Robl1. Using this antibody, we show that Robl is a ubiquitous cytoplasmic dynein component, being found in samples purified from brain, liver, kidney, and testis. Immunofluorescence analysis reveals that Robl is present in punctate organelles in rat neuroblastoma cells. In testis, Robl is found in Leydig cells, spermatocytes, and sperm flagella.  相似文献   

18.
ErbB1 and ErbB2 display differential subcellular localization in human skin and cultured keratinocytes. To determine whether ErbB1 and ErbB2 also differ in cytoskeletal binding properties, normal human keratinocytes grown under conditions favoring a basal or differentiated phenotype were repeatedly extracted in a non-ionic detergent buffer. In basaloid keratinocytes, cytoskeletal association of ErbB1 and ErbB2 was limited. ErbB1 ( approximately 5%) was tightly associated with the cytoskeleton, compared to <1% of ErbB2 (p=0.004). After EGF stimulation, activated ErbB1 and ERK associated with the cytoskeleton to a greater extent than did total ErbB1 and total ERK. Association of ErbB2 increased markedly in differentiated keratinocytes, whereas association of ErbB1 was similar in basaloid and differentiated cells. Cytoskeletal association of ErbB2 correlated with plasma membrane localization. These results suggest that ErbB1 and ErbB2 employ different mechanisms of plasma membrane targeting during keratinocyte differentiation, and that cytoskeletal association may facilitate the coupling of activated ErbB1 and ERK.  相似文献   

19.
20.
This article reviews the evidence for macrophages playing an important role in the regulation of tumor angiogenesis. Findings in mouse models show that macrophages promote angiogenesis in tumors both by producing excessive amounts of proangiogenic factors and by physically assisting sprouting blood vessels to augment the complexity of the intra-tumoral vascular network. Recent studies however suggest that macrophages may be dispensable for the initiation of angiogenesis in tumors. Rather, these cells express proangiogenic programs that enhance the complexity of the tumor-associated vasculature, leading to aberrant, plethoric and dysfunctional angiogenesis. Gene expression and cell depletion studies further indicate that tumor-associated macrophages (TAMs) comprise phenotypically and functionally distinct subsets. This may reflect “education” of the macrophage phenotype by signals in some areas of the tumor microenvironment and/or TAM subsets derived from distinct macrophage precursors. Among the better characterized TAM subsets are the proangiogenic (TIE2+) and the angiostatic/inflammatory (CD11c+) macrophages, which coexist in tumors. Such antagonizing TAM subsets occupy distinct niches in the tumor microenvironment and are present at ratios that vary according to the tumor type and grade. Specifically targeting TAMs or reprogramming them from a proangiogenic to an angiostatic function may “normalize” the tumor vasculature and improve the efficacy of various anticancer therapies, including radiotherapy, chemotherapy and vascular-disrupting agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号