首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report that the genetic locus that encodes vertebrate smooth muscle and nonmuscle myosin light chain kinase (MLCK) and kinase-related protein (KRP) has a complex arrangement and a complex pattern of expression. Three proteins are encoded by 31 exons that have only one variation, that of the first exon of KRP, and the genomic locus spans approximately 100 kb of DNA. The three proteins can differ in their relative abundance and localization among tissues and with development. MLCK is a calmodulin (CaM) regulated protein kinase that phosphorylates the light chain of myosin II. The chicken has two MLCK isoforms encoded by the MLCK/KRP locus. KRP does not bind CaM and is not a protein kinase. However, KRP binds to and regulates the structure of myosin II. Thus, KRP and MLCK have the same subcellular target, the myosin II molecular motor system. We examined the tissue and cellular localization of KRP and MLCK in the chicken embryo and in adult chicken tissues. We report on the selective localization of KRP and MLCK among and within tissues and on a differential distribution of the proteins between embryonic and adult tissues. The results fill a void in our knowledge about the organization of the MLCK/KRP genetic locus, which appears to be a late evolving regulatory paradigm, and suggest an independent and complex regulation of expression of the gene products from the MLCK/KRP genetic locus that may reflect a basic principle found in other eukaryotic gene clusters that encode functionally linked proteins. J. Cell. Biochem. 70:402–413, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
3.
The vertebrate genetic locus, coding for a Ca2+/calmodulin-dependent enzyme myosin light chain kinase (MLCK), the key regulator of smooth muscle contraction and cell motility, reveals a complex organization. Two MLCK isoforms are encoded by the MLCK genetic locus. Recently identified M(r) 210 kDa MLCK contains a sequence of smooth muscle/non-muscle M(r) 108 kDa MLCK and has an additional N-terminal sequence (Watterson et al., 1995. FEBS Lett. 373 : 217). A gene for an independently expressed non-kinase product KRP (telokin) is located within the MLCK gene (Collinge et al., 1992. Mol. Cell. Biol. 12 : 2359). KRP binds to and regulates the structure of myosin filaments (Shirinsky et al., 1993. J. Biol. Chem. 268 : 16578). Here we compared biochemical properties of MLCK-210 and MLCK-108 and studied intracellular localization of MLCK-210. MLCK-210 was isolated from extract of chicken aorta by immunoprecipitation using specific antibody and biochemically analysed in vitro. MLCK-210 phosphorylated myosin regulatory light chain and heavy meromyosin. The Ca(2+)-dependence and specific activity of MLCK-210 were similar to that of MLCK-108 from turkey gizzard. Using sedimentation assay we demonstrated that MLCK-210 as well as MLCK-108 binds to both actin and myosin filaments. MLCK-210 was localized in smooth muscle cell layers of aortic wall and was found to co-localize with microfilaments in cultured aortic smooth muscle cells.  相似文献   

4.
5.
6.
A single human myosin light chain kinase gene (MLCK; MYLK)   总被引:7,自引:0,他引:7  
Lazar V  Garcia JG 《Genomics》1999,57(2):256-267
The myosin light chain kinase (MLCK) gene, a muscle member of the immunoglobulin gene superfamily, yields both smooth muscle and nonmuscle cell isoforms. Both isoforms are known to regulate contractile activity via calcium/calmodulin-dependent myosin light chain phosphorylation. We previously cloned from a human endothelial cell (EC) cDNA library a high-molecular-weight nonmuscle MLCK isoform (EC MLCK (MLCK 1) with an open reading frame that encodes a protein of 1914 amino acids. We now describe four novel nonmuscle MLCK isoforms (MLCK 2, 3a, 3b, and 4) that are the alternatively spliced variants of an mRNA precursor that is transcribed from a single human MLCK gene. The primary structure of the cDNA encoding the nonmuscle MLCK isoform 2 is identical to the previously published human nonmuscle MLCK (MLCK 1) (J. G. N. Garcia et al., 1997, Am. J. Respir. Cell Mol. Biol. 16, 489-494) except for a deletion of nucleotides 1428-1634 (D2). The full nucleotide sequence of MLCK isoforms 3a and 3b and partial sequence for MLCK isoform 4 revealed identity to MLCK 1 except for deletions at nucleotides 5081-5233 (MLCK 3a, D3), double deletions of nucleotides 1428-1634 and 5081-5233 (MLCK 3b), and nucleotide deletions 4534-4737 (MLCK 4, D4). Northern blot analysis demonstrated the extended expression pattern of the nonmuscle MLCK isoform(s) in both human adult and human fetal tissues. RT-PCR using primer pairs that were designed to detect specifically nonmuscle MLCK isoforms 2, 3, and 4 deletions (D2, D3, and D4) confirmed expression in both human adult and human fetal tissues (lung, liver, brain, and kidney) and in human endothelial cells (umbilical vein and dermal). Furthermore, relative quantitative expression studies demonstrated that the nonmuscle MLCK isoform 2 is the dominant splice variant expressed in human tissues and cells. Further analysis of the human MLCK gene revealed that the MLCK 2 isoform represents the deletion of an independent exon flanked by 5' and 3' neighboring introns of 0.6 and 7.0 kb, respectively. Together these studies demonstrate for the first time that the human MLCK gene yields multiple nonmuscle MLCK isoforms by alternative splicing of its transcribed mRNA precursor with differential distribution of these isoforms in various human tissues and cells.  相似文献   

7.
The synuclein family of proteins is a group of primarily brain-expressed polypeptides that show a high degree of amino acid conservation. alpha-Synuclein is the best known of the synuclein family, as it is a major component of the Lewy body, a cytoplasmic inclusion characteristic of Parkinson's disease as well as a variety of related neurodegenerative disorders. With the discovery that mutations in alpha-synuclein can cause Parkinson's disease, a potential role for the other synuclein family members in neurodegenerative disease is being considered. beta-Synuclein in particular may deserve special attention, as it is co-expressed with alpha-synuclein at presynaptic nerve terminals, is subject to phosphorylation by Ca(2+) calmodulin protein kinase II, appears important for neural plasticity, and forms aggregates in the brains of patients with Parkinson's disease and a related disorder. To facilitate study of beta-synuclein, we have cloned the mouse beta-synuclein gene (Sncb) and determined its genomic organization, size, and intron-exon structure. Using an interspecific backcross mapping panel from The Jackson Laboratory, we were then able to localize Sncb to chromosome 13 at the MGD 35.0 cM position. Like the human beta-synuclein gene, Sncb appears to consist of six exons separated by five introns. Unlike the human beta-synuclein gene, the mouse ortholog possesses a variant GC 5' splice donor sequence at the exon 4 - intron 4 boundary in a highly conserved splice junction consensus. Northern blot analysis and Western blot analysis both indicate that Sncb is highly expressed in the brain. Knowledge of the genomic organization and expression pattern of Sncb will allow functional studies of its potential role in neurodegeneration to commence in the mouse.  相似文献   

8.
Pancreatic polypeptide is derived from a polyprotein precursor molecule. Although the amino acid sequences specifying the signal peptide and pancreatic polypeptide are well conserved between the rat and the human, the carboxy-terminal amino acid sequences of the precursors are highly divergent. To better understand the molecular basis of the divergence between the rat and human C-terminal peptides, we have determined the nucleotide sequence of the rat pancreatic polypeptide gene. A comparison between the primary structures of the rat and human genes reveals that the heterogeneity of the C-terminal peptides can be explained in large part by a frameshift mutation and the utilization of an alternative splice donor site in the third exon of the rat gene. As a consequence of the displaced splice site, part of the third exon of the rate gene is homologous to the sequence in the third intron of the human gene. Our results suggest that the rat and human pancreatic polypeptide genes arose from a common ancestral gene, and that differences in the C-terminal domains of the precursor reflect less strict evolutionary constraints than those imposed upon the amino-terminal domains of the precursor.  相似文献   

9.
Structure of the rat p53 tumor suppressor gene.   总被引:13,自引:1,他引:12       下载免费PDF全文
Aberration within the p53 tumor suppressor gene is the most frequently identified genetic damage in human cancer. Regulatory functions proposed for the p53 protein include modulation of the cell cycle, cellular differentiation, signal transduction, and gene expression. Additionally, the p53 gene product may guard the genome against incorporation of damaged DNA. To facilitate study of its role in carcinogenesis using a common animal model, we determined the structure of the rat p53 gene. We identified 18 splice sites and defined 25 bases of the intervening sequences adjacent to these sites. We also discovered an allelic polymorphism that occurs within intron 5 of the gene. The rat gene approximates the mouse ortholog. It is 12 kb in length with the non-coding exon 1 separated from exon 2 by 6.2 kb of intervening sequence. The location and size of all rat gene introns approximate those of the mouse. Whereas the mouse and human genes each contain 11 exons, the rat p53 gene is composed of only 10. No intervening sequence occurs between the region of the rat gene corresponding to exons 6 and 7 of the mouse and human p53 genes. This implies intron 6 may be functionally insignificant for species in which it is retained. To extrapolate to p53 involvement in human tumorigenesis, we suggest that mutational events within intron 6 may not be of pathological significance unless splicing is hindered.  相似文献   

10.
11.
12.
The glycophorin locus (GYP) on the long arm of chromosome 4 encodes antigens of the MNSs blood group system and displays considerable allelic variation among human populations. The genomic structure and organization of a variant glycophorin allele specifying a novel Miltenberger (Mi)-related phenotype, MiX, were examined. This variant probably arose from a gene conversion event involving a direct repeat of the acceptor splice site. Southern blot analysis indicated that MiX gene derived its 5' and 3' portions from glycophorin B or delta gene but its internal part from glycophorin A or alpha gene. Genomic sequences encompassing the rearranged regions of the MiX gene were amplified by single copy polymerase chain reaction. Direct DNA sequencing showed that during the formation of MiX gene, a short stretch of alpha exon III with a donor splice site has replaced a silent sequence in the delta gene containing a cryptic acceptor splice site. The upstream delta-alpha breakpoint is flanked by the direct repeats of the acceptor splice site, whereas the down-stream alpha-delta breakpoint is located in the adjacent intron. This segmental transfer produced a new composite exon whose expression not only transactivated a portion of silent sequence but also created intraexon and interexon hybrid junctions that characterize the antigenic specificities of MiX glycophorin. The identification of MiX as yet another delta-alpha-delta hybrid different from MiIII and MiVI in gene conversion sites suggests that shuffling of expressed and unexpressed sequences through particular genomic DNA motifs has been an important mechanism for shaping the antigenic diversity of MNSs blood group system during evolution.  相似文献   

13.
14.
Myosin light chain kinase (MLCK) and the kinase-related protein (KRP), also known as telokin, are the major independent protein products of the smooth muscle/non-muscle MLCK genetic locus. They share a common C-terminal part and major sites phosphorylated in vivo. Whereas MLCK is critically involved in myosin activation and contraction initiation in smooth muscle, KRP is thought to antagonize MLCK and to exert relaxation activity. Phosphorylation controls the MLCK and KRP activities. We generated two phosphorylation and site-specific antibodies to individually monitor levels of MLCK and KRP phosphorylation on critical sites. We quantified the level of KRP phosphorylation in smooth muscle before and after an increase in intracellular free Ca2+ and stimulation of adenylate cyclase, protein kinase C, and mitogen-activated protein kinases (MAP-kinases). Forskolin and phorbol-12,13-dibutyrate increased KRP phosphorylation at Ser13 from 25 to 100% but did not produce contraction in rat ileum. The level of Ser13 phosphorylation was not altered during Ca2+-dependent contraction evoked by KCl depolarization or carbachol, but subsequently increased to maximum during forskolin-induced relaxation. These data suggest that several intracellular signaling pathways control phosphorylation of KRP on Ser13 in smooth muscle and thus may contribute to relaxation. In contrast, phosphorylation level of Ser19 of KRP increased only slightly (from 30 to 40-45%) and only in response to MAP-kinase activation, arguing against its regulatory function in smooth muscle.  相似文献   

15.
Alternative splicing and bioinformatic analysis of human U12-type introns   总被引:1,自引:0,他引:1  
U12-type introns exist, albeit rarely, in a variety of multicellular organisms. Splicing of U12 intron-containing precursor mRNAs takes place in the U12-type spliceosome that is distinct from the major U2-type spliceosome. Due to incompatibility of these two spliceosomes, alternative splicing involving a U12-type intron may give rise to a relatively complicated impact on gene expression. We studied alternative U12-type intron splicing in an attempt to gain more mechanistic insights. First, we characterized mutually exclusive exon selection of the human JNK2 gene, which involves an unusual intron possessing the U12-type 5′ splice site and the U2-type 3′ splice site. We demonstrated that the long and evolutionary conserved polypyrimidine tract of this hybrid intron provides important signals for inclusion of its downstream alternative exon. In addition, we examined the effects of single nucleotide polymorphisms in the human WDFY1 U12-type intron on pre-mRNA splicing. These results provide mechanistic implications on splice-site selection of U12-type intron splicing. We finally discuss the potential effects of splicing of a U12-type intron with genetic defects or within a set of genes encoding RNA processing factors on global gene expression.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号