首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of T-cell clones derived from a donor who experienced dengue illness following receipt of a live experimental dengue virus type 3 (DEN3) vaccine cross-reacted with all four serotypes of dengue virus, but some were serotype specific or only partially cross-reactive. The nonstructural protein, NS3, was immuno-dominant in the CD4+ T-cell response of this donor. The epitopes of four NS3-specific T-cell clones were analyzed. JK15 and JK13 recognized only DEN3 NS3, while JK44 recognized DEN1, DEN2, and DEN3 NS3 and JK5 recognized DEN1, DEN3, and West Nile virus NS3. The epitopes recognized by these clones on the DEN3 NS3 protein were localized with recombinant vaccinia viruses expressing truncated regions of the NS3 gene, and then the minimal recognition sequence was mapped with synthetic peptides. Amino acids critical for T-cell recognition were assessed by using peptides with amino acid substitutions. One of the serotype-specific clones (JK13) and the subcomplex- and flavivirus-cross-reactive clone (JK5) recognized the same core epitope, WITDFVGKTVW. The amino acid at the sixth position of this epitope is critical for recognition by both clones. Sequence analysis of the T-cell receptors of these two clones showed that they utilize different VP chains. The core epitopes for the four HLA-DR15-restricted CD4+ CTL clones studied do not contain motifs similar to those proposed by previous studies on endogenous peptides eluted from HLA-DR15 molecules. However, the majority of these dengue virus NS3 core epitopes have a positive amino acid (K or R) at position 8 or 9. Our results indicate that a single epitope can induce T cells with different virus specificities despite the restriction of these T cells by the same HLA-DR15 allele. This finding suggests a previously unappreciated level of complexity for interactions between human T-cell receptors and viral epitopes with very similar sequences on infected cells.  相似文献   

2.
3.
4.
5.
6.
Antibodies induced against mammalian single-stranded DNA binding protein (ssDBP) UP I were shown to be cross-reactive with most of the basic hnRNP core proteins, the main constituents of 40S hnRNP particles. This suggested a structural relationship between both groups of proteins. Using the anti-ssDBP antibodies, a cDNA clone (pRP10) was isolated from a human liver cDNA library in plasmid expression vector pEX1. By DNA sequencing this clone was shown to encode in its 949 bp insert the last 72 carboxy terminal amino acids of the ssDBP UP I. Thereafter, an open reading frame continued for another 124 amino acids followed by a UAA (ochre) stop codon. Direct amino acid sequencing of a V8 protease peptide from hnRNP core protein A1 showed that this peptide contained at its amino terminus the last 11 amino acids of UP I followed by 19 amino acids which are encoded by the open reading frame of cDNA clone pRP10 immediately following the UP I sequence. This proves that ssDBP UP I arises by proteolysis from hnRNP core protein A1. This finding must lead to a re-evaluation of the possible physiological role of UP I and related ssDBPs. The formerly assumed function in DNA replication, although not completely ruled out, should be reconsidered in the light of a possible alternative or complementary function in hnRNA processing where UP I could either be a simple degradation product of core protein A1 (as a consequence of controlling the levels of active A1) or may continue to function as an RNA binding protein which has lost the ability to interact with the other core proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Elevated circulating levels of chemokines have been reported in patients with dengue fever and are proposed to contribute to the pathogenesis of dengue disease. To establish in vitro models for chemokine induction by dengue 2 virus (DEN2V), we studied a variety of human cell lines and primary cells. DEN2V infection of HepG2 and primary dendritic cells induced the production of interleukin-8 (IL-8), RANTES, MIP-1alpha, and MIP-1beta, whereas only IL-8 and RANTES were induced following dengue virus infection of HEK293 cells. Chemokine secretion was accompanied by an increase in steady-state mRNA levels. No chemokine induction was observed in HEK293 cells treated with poly(I:C) or alpha interferon, suggesting a direct effect of virus infection. To determine the mechanism(s) involved in the induction of chemokine production by DEN2V, individual dengue virus genes were cloned into plasmids and expressed in HEK293 cells. Transfection of a plasmid expressing NS5 or a dengue virus replicon induced IL-8 gene expression and secretion. RANTES expression was not induced under these conditions, however. Reporter assays showed that IL-8 induction by NS5 was principally through CAAT/enhancer binding protein, whereas DEN2V infection also induced NF-kappaB. These results indicate a role for the dengue virus NS5 protein in the induction of IL-8 by DEN2V infection. Recruitment and activation of potential target cells to sites of DEN2V replication by virus-induced chemokine production may contribute to viral replication as well as to the inflammatory components of dengue virus disease.  相似文献   

8.
Lack of an appropriate animal model for dengue virus (DEN), which causes dengue fever and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), has impeded characterization of the mechanisms underlying the disease pathogenesis. The cardinal feature of DHF/DSS, the severe form of DEN infection, is increased vascular permeability. To develop a murine model that is more relevant to DHF/DSS, a novel DEN strain, D2S10, was generated by alternately passaging a non-mouse-adapted DEN strain between mosquito cells and mice, thereby mimicking the natural transmission cycle of the virus between mosquitoes and humans. After infection with D2S10, mice lacking interferon receptors died early without manifesting signs of paralysis, carried infectious virus in both non-neuronal and neuronal tissues, and exhibited signs of increased vascular permeability. In contrast, mice infected with the parental DEN strain developed paralysis at late times after infection, contained detectable levels of virus only in the central nervous system, and displayed normal vascular permeability. In the mice infected with D2S10, but not the parental DEN strain, significant levels of serum tumor necrosis factor alpha (TNF-alpha) were produced, and the neutralization of TNF-alpha activity prevented early death of D2S10-infected mice. Sequence analysis comparing D2S10 to its parental strain implicated a conserved region of amino acid residues in the envelope protein as a possible source for the D2S10 phenotype. These results demonstrate that D2S10 causes a more relevant disease in mice and that TNF-alpha may be one of several key mediators of severe DEN-induced disease in mice. This report represents a significant advance in animal models for severe DEN disease, and it begins to provide mechanistic insights into DEN-induced disease in vivo.  相似文献   

9.
Dengue fever, a neglected emerging disease for which no vaccine or antiviral agents exist at present, is caused by dengue virus, a member of the Flavivirus genus, which includes several important human pathogens, such as yellow fever and West Nile viruses. The NS5 protein from dengue virus is bifunctional and contains 900 amino acids. The S-adenosyl methionine transferase activity resides within its N-terminal domain, and residues 270 to 900 form the RNA-dependent RNA polymerase (RdRp) catalytic domain. Viral replication begins with the synthesis of minus-strand RNA from the dengue virus positive-strand RNA genome, which is subsequently used as a template for synthesizing additional plus-strand RNA genomes. This essential function for the production of new viral particles is catalyzed by the NS5 RdRp. Here we present a high-throughput in vitro assay partly recapitulating this activity and the crystallographic structure of an enzymatically active fragment of the dengue virus RdRp refined at 1.85-A resolution. The NS5 nuclear localization sequences, previously thought to fold into a separate domain, form an integral part of the polymerase subdomains. The structure also reveals the presence of two zinc ion binding motifs. In the absence of a template strand, a chain-terminating nucleoside analogue binds to the priming loop site. These results should inform and accelerate the structure-based design of antiviral compounds against dengue virus.  相似文献   

10.
Dengue viruses (DEN), causative agents of dengue fever (DF) and more severe dengue hemorrhagic fever (DHF)/dengue shock syndrome, infect over 100 million people every year. Among those infected, up to one-half million people develop DHF, which requires an extensive hospital stay. Recent reports indicate that there is a significant correlation between virus titer in the bloodstream of infected individuals and the severity of the disease, especially the development of DHF. This suggests that if there is a procedure to reduce viremia in infected subjects, then the severity of the disease may be controlled during the critical early stages of the disease before it progresses to DHF. We have generated bispecific mAb complexes (heteropolymer(s), HP), which contain a mAb specific for the DEN envelope glycoprotein cross-linked with a second mAb specific for the primate E complement receptor 1. These HP facilitate rapid binding of DEN to human and monkey E in vitro, with approximately 90% bound within 5 min. Furthermore, in a passive viremia monkey model established by continuous steady state infusion of DEN, injection of HP during the steady state promoted rapid binding of DEN to the E, followed by subsequent clearance from the vascular system. Moreover, HP previously infused into the circulation is capable of efficiently capturing a subsequent challenge dose of DEN and binding it to E. These data suggest that HP potentially can be useful for alleviating DEN infection-associated symptoms by reducing titers of free virus in the vascular system.  相似文献   

11.
Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.  相似文献   

12.
Several functions required for the replication of influenza A viruses have been attributed to the viral matrix protein (M1), and a number of studies have focused on a region of the M1 protein designated "helix six." This region contains an exposed positively charged stretch of amino acids, including the motif 101-RKLKR-105, which has been identified as a nuclear localization signal, but several studies suggest that this domain is also involved in functions such as binding to the ribonucleoprotein genome segments (RNPs), membrane association, interaction with the viral nuclear export protein, and virus assembly. In order to define M1 functions in more detail, a series of mutants containing alanine substitutions in the helix six region were generated in A/WSN/33 virus. These were analyzed for RNP-binding function, their capacity to incorporate into infectious viruses by using reverse genetics, the replication properties of rescued viruses, and the morphological phenotypes of the mutant virus particles. The most notable effect that was identified concerned single amino acid substitution mutants that caused significant alterations to the morphology of budded viruses. Whereas A/WSN/33 virus generally forms particles that are predominantly spherical, observations made by negative stain electron microscopy showed that several of the mutant virions, such as K95A, K98A, R101A, and K102A, display a wide range of shapes and sizes that varied in a temperature-dependent manner. The K102A mutant is particularly interesting in that it can form extended filamentous particles. These results support the proposition that the helix six domain is involved in the process of virus assembly.  相似文献   

13.
14.
The interaction between cell surface receptors and the envelope glycoprotein (EGP) on the viral membrane surface is the initial step of Dengue virus infection. To understand the host range, tissue tropism, and virulence of this pathogen, it is critical to elucidate the molecular mechanisms of the interaction of EGP with receptor molecules. Here, using a TLC/virus-binding assay, we isolated and characterized a carbohydrate molecule on mammalian cell surfaces that is recognized by dengue virus type 2 (DEN2). Structural determination by immunochemical methods showed that the carbohydrate structure of the purified glycosphingolipid was neolactotetraosylceramide (nLc4Cer). This glycosphingolipid was expressed on the cell surface of susceptible cells, such as human erythroleukemia K562 and baby hamster kidney BHK-21. All serotypes of DEN viruses, DEN1 to DEN4, reacted with nLc4Cer, and the non-reducing terminal disaccharide residue Galbeta1-4GlcNAcbeta1- was found to be a critical determinant for the binding of DEN2. Chemically synthesized derivatives carrying multiple carbohydrate residues of nLc4, but not nLc4 oligosaccharide, inhibited DEN2 infection of BHK-21 cells. These findings strongly suggested that multivalent nLc4 oligosaccharide could act as a competitive inhibitor against the binding of DEN2 to the host cells.  相似文献   

15.
16.
Dengue (DEN) viruses consisting of four distinct serotypes cause diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome in humans. Most of the dengue viruses can be effectively propagated in some mosquito and mammalian cell lines. In this study, we applied microcarrier cell culture technology to study two relevant aspects involving dengue virus, one on biotechnology of cell growth and virus production, and the other on virus biology concerning genetic variation of a virus population. We investigated the growth of C6/36 mosquito cells and Vero cells grown on Cytodex 1 microcarriers. High-titer DEN virus production can be achieved in C6/36 and Vero cells infected at low cell inoculation density, in the lag-phase cell stage, and at low multiplicity of infection (MOI). The maximum titers produced for DEN-1, DEN-3, and DEN-4 viruses were approximately 10- to 10,000-fold lower than for DEN-2 virus produced in C6/36 and Vero cells grown on microcarriers. The DEN-2 virus produced in C6/36 cells displayed far more extensive plaque heterogeneity than in Vero cells. Microcarrier C6/36 mosquito cell culture appeared to be the most effective system for four-serotype DEN virus production. Interestingly, some selected variants of DEN virus may outgrow in Vero cells when using a T-flask culture. These results may provide useful information for DEN vaccine development.  相似文献   

17.
Y Chen  T Maguire    R M Marks 《Journal of virology》1996,70(12):8765-8772
The nature of the initial interaction of dengue virus with target cells and the extent to which this interaction defines tropism are unknown. Infection of some cells may involve antidengue antibody-mediated immune adherence to cells bearing immunoglobulin Fc receptors; however, this mechanism does not explain primary infection or the infection of cells without Fc receptors. We hypothesized that dengue virus envelope protein mediates initial binding to target cells. To test this hypothesis, a recombinant chimeric form of dengue type 2 virus envelope protein was used as a probe to investigate binding to the surfaces of potential target cells. Envelope protein was expressed amino terminal to the heavy-chain constant region of human immunoglobulin G containing the Fc receptor binding motif; the binding mediated by envelope determinants was distinguishable from the binding mediated by immunoglobulin Fc determinants. We found that the recombinant chimera bound to Vero, CHO, endothelial, and glial cells through envelope protein determinants and to monocytes and U937 cells by Fc-Fc receptor interactions. The highest level of binding was to Vero cells; binding was dose and time dependent and saturable. Examination of partial-length recombinant envelope proteins indicated that the binding motif was expressed between amino acids 281 and 423. Recombinant envelope protein inhibited infection of Vero cells by dengue virus, indicating the functional significance of the interaction of envelope protein and target cells in infectivity. These results suggest that envelope protein binding to a non-Fc receptor could explain the cell and tissue tropism of primary dengue virus infection.  相似文献   

18.

Background  

Dengue (DEN) is an infectious disease caused by the DEN virus (DENV), which belongs to the Flavivirus genus in the family Flaviviridae. It has a (+) sense RNA genome and is mainly transmitted to humans by the vector mosquito Aedes aegypti. Dengue fever (DF) and dengue hemorrhagic fever (DHF) are caused by one of four closely related virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4). Epidemiological and evolutionary studies have indicated that host and viral factors are involved in determining disease outcome and have proved the importance of viral genotype in causing severe epidemics. Host immune status and mosquito vectorial capacity are also important influences on the severity of infection. Therefore, an understanding of the relationship between virus variants with altered amino acids and high pathogenicity will provide more information on the molecular epidemiology of DEN. Accordingly, knowledge of the DENV serotypes and genotypes circulating in the latest DEN outbreaks around the world, including Mexico, will contribute to understanding DEN infections.  相似文献   

19.
A major function of the hepatitis C virus (HCV) core protein is the interaction with genomic RNA to form the nucleocapsid, an essential component of the virus particle. Analyses to identify basic amino acid residues of HCV core protein, important for capsid assembly, were initially performed with a cell-free system, which did not indicate the importance of these residues for HCV infectivity. The development of a cell culture system for HCV (HCVcc) allows a more precise analysis of these core protein amino acids during the HCV life cycle. In the present study, we used a mutational analysis in the context of the HCVcc system to determine the role of the basic amino acid residues of the core protein in HCV infectivity. We focused our analysis on basic residues located in two clusters (cluster 1, amino acids [aa]6 to 23; cluster 2, aa 39 to 62) within the N-terminal 62 amino acids of the HCV core protein. Our data indicate that basic residues of the first cluster have little impact on replication and are dispensable for infectivity. Furthermore, only four basic amino acids residues of the second cluster (R50, K51, R59, and R62) were essential for the production of infectious viral particles. Mutation of these residues did not interfere with core protein subcellular localization, core protein-RNA interaction, or core protein oligomerization. Moreover, these mutations had no effect on core protein envelopment by intracellular membranes. Together, these data indicate that R50, K51, R59, and R62 residues play a major role in the formation of infectious viral particles at a post-nucleocapsid assembly step.  相似文献   

20.
An arboviral infection like dengue fever/dengue hemorrhagic fever (DHF) with high morbidity and mortality rate are extensively prevalent in several parts of the world. Global efforts have been directed towards development of vaccine for prevention of dengue. However, lack of thorough understanding about biology and pathogenesis of dengue virus restricts us from development of an effective vaccine. Here we report molecular interaction of domain III of envelope protein of dengue virus type-4 with heparan sulfate. A codon optimized synthetic gene encoding domain III of dengue virus type-4 envelope protein was expressed in Escherichia coli and purified under denaturing conditions, refolded and purified to homogeneity. Refolded Den4-DIII was characterized using biochemical and biophysical methods and shown to be pure and homogeneous. The purified protein was recognized in Western analyses by monoclonal antibody specific for the 6x His tag as well as the H241 monoclonal antibody. The in vitro refolded recombinant protein preparation was biologically functional and found to bind cell free heparan sulfate. This is the first report providing molecular evidence on binding of dengue-4 envelope protein to heparan sulfate. We developed a homology model of dengue-4 envelope protein (domain III) and mapped the possible amino acid residues critical for binding to heparan sulfate. Domain III envelope protein of dengue virus is a lead vaccine candidate. Our findings further the understanding on biology of dengue virus and will help in development of bioassay for the proposed vaccine candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号