首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frog urinary bladder undergoes, in some conditions, a marked increase of its water permeability when incubated in hypertonic media. This increase was observed with various nonpermeant solutes. It seems to result from the shrinkage of an osmo-sensitive compartment of the tissue, probably the epithelial cells. Many similarities were found between this effect and the physiological increase in water permeability (hydrosmotic response) elicited by antidiuretic hormone (ADH): both were dependent on the physiological state of the animals, and although the response was slower after hyperosmolar than after hormonal challenge, the patterns of response were similar, and in both cases markedly dependent on bathing solution temperature. Norepinephrine and prostaglandin E1, which in this tissue reduce the hydrosmotic action of ADH, presumably by inhibiting the adenyl cylase also reduced the effect of hyperosmolarity. Conversely this effect was potentiated by incubation in the presence of oxytocin, exogenous cyclic AMP, and theophylline, conditions in which the intracellular concentration of cyclic AMP is increased. These data demonstrate that the response to hyperosmolarity is elicited, at least partly, by mechanisms also involved in the physiological hydrosmotic response to ADH.  相似文献   

2.
Summary In the urinary bladder of amphibia, hypertonicity of the serosal bath (SH) evokes an increase in transepithelial water permeability, the characteristics of which resemble the response to antidiuretic hormone (ADH). The ionic dependency, in particular for Ca2+, appears very similar forSH- and ADH-induced water fluxes. In the present experiments La3+ was used as a probe to study the Ca2+-dependency of the hydrosmotic response toSH in isolated urinary bladder of the toadBufo marinus.Addition of La3+ (5mm) on the serosal side of the membrane produced a significant and reversible increase in basal transepithelial water flux. The hydrosmotic response elicited by adding 250mm mannitol to the serosal Ringer's solution was inhibited by 30% in the absence of serosal Ca2+. Similarly, the hydrosmotic response toSH was inhibited by 37%, 30% and 40% when 5mm La3+ was added to the serosal medium 30 min before, concommitantly with, or 60 min after induction ofSH. The inhibition of transepithelial water flux observed in the absence of serosal Ca2+ or in the presence of serosal La3+ was reversible.The results support a critical role for Ca2+ in the modulation of transepithelial water permeability in the urinary bladder of amphibia. Ca2+ presumably exerts its effects at a post-cyclic AMP step.  相似文献   

3.
Summary The uptake of C14-urea into everted and noneverted bladder sacs was compared, over short time periods (up to 2 min), with the transepithelial urea fluxes. This method allowed the study of the time course of urea uptake and distribution, while previously this problem was only studied in steady-state conditions. When mucosal uptake was studied no accumulation of C14-urea inside the tissue was observed, indicating that the mucosal border could be the limiting step. Comparative studies of urea and inulin uptake from the serosal side showed that urea equilibrated with the water epithelial cells in less than 30 sec. This accumulation suggested again that the mucosal border is an effective barrier for urea translocation. The kinetics of the increase in urea permeability induced by antidiuretic hormone was also studied and it was similar (T1/2:4.3 min) to the kinetics of the increase in water permeability induced by the hormone (T1/2:5.6 min). A strong parallelism was also observed between the time course of the increases in water and urea permeabilities induced by medium hypertonicity (T1/2 25 and 26 min, respectively). The values obtained for the permeability coefficientk trans), either at rest or under ADH were similar to those previously reported employing steady-state techniques (28±8 and 432±25 cm·sec–1·10–7, respectively).  相似文献   

4.
Osmotic water movement across the toad urinary bladder in response to both vasopressin and cyclic AMP was inhibited by 10?5 to 10?4 M colchicine on the serosal but not on the mucosal side. This inhibitory effect was found to be time- and dose-dependent. Colchicine alone did not change basal osmotic flow and a baseline of the short-circuit current (Isc) and also did not affect a vasopressin-induced rise of the Isc. The inhibitory effect was not prevented by the addition of pyruvate. The osmotic water movement produced by 360 mM Urea (mucosal), 360 mM mannitol (serosal) or 2 μg/ml amphotericin B (mucosal), was not affected by 10?4 M colchicine. These results suggest that colchicine inhibits some biological process subsequent to the formation of cyclic AMP except a directional cytoplasmic streaming process where microtubules may be involved.  相似文献   

5.
CYCLIC 3′5′-adenosine monophosphate (cyclic AMP) regulates many physiological phenomena1,2. Cellular morphology changes when the dibutyryl derivative of cyclic AMP is added in vitro to the nutrient media of cultured mammalian cells3–6. Dibutyryl cyclic AMP has also been shown to restore controlled growth to transformed cells3, change the cell's surface architecture3,7 and induce axon formation8 with an accompanied increase in acetylcholinesterase activity9 in neuroblastoma cells growing in culture. These effects suggest that the cyclic AMP moiety may have some basic regulatory action on cell growth and cell specialization.  相似文献   

6.
The effect of prostaglandin E1 (PGE1) on rat anterior pituitary cyclic AMP accumulation and luteinizing hormone (LH) release was studied both in vivo and in vitro. Addition of PGE1 to incubation medium over a concentration range of 10-6 to 10-4 M produced a graded increase in pituitary cyclic AMP. At the lowest concentration (10-6 M) there was no significant increase in LH release, but proportional increments in LH release were seen with increasing concentrations of PGE1.Ten minutes after intravenous administration of 5 μg of PGE1 to adult male rats, pituitary cyclic AMP was substantially increased while serum LH levels were not changed. Administration of a higher dose of PGE1 (20 μg) produced a greater increase in pituitary cyclic AMP; and, at this dose serum LH was significantly increased. These results suggest that the PGE1 effect on LH release is mediated by the adenyl cyclase — cyclic AMP system.  相似文献   

7.
The effects of growth hormone-dependent serum factors on amino acid transport and on cartilage cyclic AMP levels in embryonic chicken cartilage were studied in vitro. Cartilages incubated in medium containing rat serum showed a significantly greater uptake of α-amino [1-14C] isobutyrate or [1-14C] cycloeeucine than control cartilages incubated in medium alone. Normal rat serum (5%) added to the incubation medium also caused an increase in cartilage cyclic AMP content (from as little as 23% to as much as 109%). The factors in serum which increase cartilage cyclic AMP and amino acid uptake are growth hormone dependent, since neither growth hormone itself nor serum from hypophysectomized rats affects either parameter. Growth hormone treatment of hypophysectomized rats restores these serum factors. Studies comparing the ability of sera with varying amounts of growth hormone-dependent factors to stimulate α-aminoisobutyrate transport and to increase cartilage cyclic AMP show a striking linear correlation between the two effects (r = 0.977). Theophylline and prostaglandin E1, which raise cartilage cyclic AMP also increase α-aminoisobutyrate transport. Exogenous cyclic AMP, N6-monobutyrll cyclic AMP and N6, O2′-dibutyryl cyclic AMP increase cartilage α-aminoisobutyrate transport. The data are compatible with the thesis that growth hormone-dependent serum factors increase cartilage amino acid transport by elevating cartilage cyclic AMP.  相似文献   

8.
9.
(1) K+ efflux rates from the mucosal and serosal surfaces of sheets of rabbit colonic mucosa have been determined by measuring net K+ loss into K+-free Ringer solution bathing each side of the tissue. (2) Initially, there is a high rate of K+ loss from the tissue, this falls to a lower steady-state rate after 20 min. Loss of K+ from the tissue into the serosal bath is 6–8-fold faster than loss to the mucosal bath. (3) A number of intestinal secretagogues, e.g. theophylline, cyclic AMP, carbachol, ionophore A23187, as well as the laxative bisacodyl, raise the K+ efflux rate across the mucosal border by 200–300%. In the case of K+ efflux induced by carbachol the effect is shown to be dependent on raised levels of intracellular Ca2+. Ca2+-calmodulin complex does not appear to be be involved in activation of K+ efflux across the mucosal border. (4) Amiloride does not block mucosal K+ efflux, but tetraethyl-ammonium does inhibit K+ efflux across the mucosal border, induced by either bisacodyl or raised intracellular Ca2+. (5) The results suggest that laxatives may increase the rate of K+ secretion into the colonic lumen by raising the K+ permeability of the mucosal border.  相似文献   

10.
In the toad urinary bladder 8-p-chlorophenylthio-cyclic AMP mimics the stimulatory effects of antidiuretic hormone on osmotic water permeability, 3H2O diffusion, and transepithelial sodium transport; but unlike the hormone does not cause an increase in urea permeability. Trheshold activation for the hydroosmotic response is observed at 1 micrometer and full activation at 100 micrometer. These results suggest that cyclic AMP may not mediate all the physiological effects of antidiuretic hormone and that this highly potent cyclic AMP analog may be useful in elucidating the precise role of cyclic AMP in other biomediate hormone action.  相似文献   

11.
The effect of the naturally occurring peptide substance P on release of antidiuretic hormone (ADH) was studied in anesthetized dogs. Intravenous infusions of substance P in doses of 0.5, 5.0, and 50 ng/kg/min increased plasma concentrations of ADH in a dose-related fashion. At the two low doses, this increase occured in the absence of changes in urine volume, sodium excretion, free water clearance, and urinary cyclic AMP excretion. In addition, when substance P was administered in a concentration of 0.5 ng/kg/min, plasma levels of ADH were increased even though blood pressure did not change, suggesting that substance P may release antidiuretic hormone by a direct mechanism. Intrarenal infusions at a rate of 0.5 and 5 ng/kg/min caused dose-related decreases in free water clearance and significant increases in urinary cyclic AMP excretion. These data suggest that substabce P may play an important role in the regulation of water balance.  相似文献   

12.
In dispersed mucosal cells prepared from rabbit and guinea pig stomach, the secretion of intrinsic factor was constant (0.3–0.4%/min) for at least 30 min incubation at 37°C. Histamine or isobutyl methylxanthine increased cyclic AMP and intrinsic factor secretion in both cell preparations. Isobutyl methylxanthine potentiated and cimetidine competitively inhibited (Ki=5·10?7 M) both effects of histamine. Dibutyryl cyclic AMP (1.0 mM), also caused a 3-fold increase in intrinsic factor secretion. These results suggest that in rabbit and guinea pig histamine interacts with H2-receptors to increase cyclic AMP which mediates the rise in the rate of intrinsic factor secretion.  相似文献   

13.
Prostaglandins of the E-series (PGE1 and PGE2) may be involved in disease-related, localized loss of bone. E-prostaglandins increase the cyclic AMP content of many cells; and, to determine if their effects on bone are mediated by cyclic AMP, we examined the effects of E-prostaglandins and of other agents on the cyclic AMP content of cultured bone cells. PGE2 produced a rapid, marked and dose-related increase in the cyclic AMP content of confluent monolayers of bone cells isolated from newborn rat calvaria. At 2.8 × 10−6 M, PGE1 and PGE2 had approximately the same effect, while the effect of PGF was much less pronounced. In the presence of theophylline, PGE2 had a more marked effect than parathyroid hormone (PTH) and the combination of PGE2 and PTH had a synergistic effect. The divalent, cationic, ionophore, A23187, produced an increase in cellular cyclic AMP and had an additive effect in combination with PGE2. Synthetic salmon calcitonin (CT), which inhibits the bone resorptive effect of PGE2, increased cellular cyclic AMP and had an additive effect in combination with PGE2. A prostaglandin antagonist, SC-19220, partially inhibited the resorptive effect of PGE2 and reduced its effect on cellular cyclic AMP. The calcium antagonist, D600, inhibited the bone resorptive effects of PGE2 but had no effect on increased cellular cyclic AMP produced by PGE2.The marked effect of PGE2 on bone cell cyclic AMP suggests that this action is involved in the mechanism of PGE2-related bone loss. The fact that agents with different effects on PGE2-induced increases in cellular cyclic AMP can inhibit its resorptive actions, suggests that PGE2-induced changes in cyclic AMP may be related less to its resorptive actions than to its inhibitory effect on bone formation.  相似文献   

14.
Summary The extracellular Ca2+ requirement for antidiuretic hormone (ADH) stimulation of water permeability in the toad urinary bladder has been critically examined. The polarity of the tissue was maintained with 1mm Ca2+ in the mucosal bathing medium and a serosal bath nominally free of Ca2+. Under these condition, ADH-induced osmotic water flow was inhibited by more than 60% while enhancement of the diffusional permeability to water was unaffected. Structural studies revealed that low serosal Ca2+ led to parallel alterations in epithelial architecture that amounted to a significant distorition of the osmotic water pathway. Prevention of these alterations, or restoration of normal cell-cell contact showed that the reduction of serosal Ca2+ did not restrict hormonal action,per se, but that it resulted in a weakening of cell-cell junctions such that intercellular space distension during water flow occurred to a point where the geometric conditions for maintenance of osmotic flow were compromised. We conclude that extracellular Ca2+ is not a requirement for the molecular aspects of ADH action but that, in its absence, a direct measurement of ADH-induced osmotic flow proves to be an inaccurate index of the hormone-generated changes in epithelial transport characteristics. Under certain conditions the ADH-effect on the tissue's hydraulic permeability is probably best assessed by measurement of the diffusional permability to water; although accuracy in this determination is difficult, it is not as strongly dependent on tissue geometry.  相似文献   

15.
1. By the action of 1-methyl-3-isobutylxanthine (isobutyltheophylline, 2 - 3 × 10−4 M), the content of cyclic 3', 5'-AMP in the antral and duodenal muscles of the rabbit is increased by 72 % and 126 %, respectively; by 1.8 × 10−7 M 13-norleucine-motilin and 1.8 × 10−6 M acetylcholine it is not changed. 13-norleucine-motilin is an analogue of the recently discovered duodenal tissue hormone motilin and has identical effects. 1-methyl-3-isobutylxanthine has a more powerful inhibiting effect on phosphodiesterase than has theophylline.2. 3 × 10−4 M isobutyltheophylline reduces the tone of the duodenal muscle while simultaneously increasing the content of cyclic AMP and negates the tone-enhancing effect of nle-motilin on the duodenal muscle, while nle-motilin increases the muscle tone lowered by isobutyltheophylline.3. The basic tone of the antral muscle is not reduced by isobutyltheophylline. However, the contraction-promoting effect of nle-motilin after an increase in cyclic AMP due to isobutyltheophylline is significantly lower.4. It is assumed that the changes in the tone or in the response of the antral and duodenal muscles to nle-motilin observed after the administration of isobutyltheophylline, are due to the increase of cyclic AMP in the tissue.5. The antagonistic effects of cyclic AMP and motilin on the gastro-intestinal muscles might be of physiological importance for the regulation of the gastro-intestinal motor activity.  相似文献   

16.
A cell suspension was prepared from immature rat ovaries by treatment with trypsin and collagenase. The isolated cells were capable of converting [8-14C]adenine to cyclic [14C]AMP and the rate of this conversion was stimulated in vitro by luteinizing hormone and human chorionic gonadotropine, but not by prolactin, norepinephrine, dopamine or albumin. The accumulation of progesterone was also measured in these cells by radioimmunoassay. In vitro addition of luteinizing hormone stimulated the accumulation of radioimmunoassayable progesterone. The conversion of [8-14C]adenine to cyclic [14C]AMP showed a rapid increase during the first 30 min of the incubation period when luteinizing hormone was added to the incubation medium. Progesterone accumulation in response to the same dose of luteinizing hormone showed a lag period for the first 30 min of incubation after which there was an increase up to 2 h. The luteinizing hormone-induced progesterone accumulation was sensitive to puromycin, but there was no effect on the luteinizing hormone-induced increase in cyclic [14C]AMP formation from [8-14C]-adenine. Actinomycin D also inhibited the luteinizing hormone-induced progesterone accumulation, with no effect on cyclic AMP formation. The results suggest that the luteinizing hormone-induced progesterone accumulation in rat ovarian interstitial cell suspension is preceded by an increased accumulation of cyclic AMP and that the accumulation of steroid under the influence of luteinizing hormone involve processes sensitive to puromycin and antinomycin D.  相似文献   

17.
—Five areas of guinea pig brain were examined to determine the properties of the receptor sites mediating increases in [3H]adenosine 3′,5′-monophosphate (cyclic AMP). Both epinephrine and histamine were effective in causing increases in cyclic AMP in slices derived from cerebral cortex, hippocampus or amygdala, but not in diencephalon or brainstem. Stimulation of slices of cerebral cortex by either epinephrine or histamine resulted in a small, but reproducible, decrease in specific radioactivity of the [3H]-cyclic AMP produced, as did stimulation of the hippocampus by epinephrine. The catecholamine receptor was an α-adrenergic receptor in all three areas where epinephrine was effective; α-adrenergic stimulation, but not β-adrenergic stimulation, increased levels of [3H]-cyclic AMP. Furthermore, α-, but not β-adrenergic blocking agents, prevented the epinephrine- induced increase of both [3H]- and total cyclic AMP in cerebral cortex and hippocampus. Only antihistaminic agents were capable of antagonizing the histamine-induced increase of both [3H]- and total cyclic AMP in these two brain areas. The catecholamine receptor in the amygdala also appeared to be an α-adrenergic receptor. The effects of histamine and epinephrine together were far greater than the sum of effects of either hormone alone in both cerebral cortex and hippocampus.  相似文献   

18.
Measurements of diffusion permeability and of net transfer of water have been made across the isolated urinary bladder of the toad, Bufo marinus, and the effects thereon of mammalian neurohypophyseal hormone have been examined. In the absence of a transmembrane osmotic gradient, vasopressin increases the unidirectional flux of water from a mean of 340 to a mean of 570 µl per cm2 per hour but the net water movement remains essentially zero. In the presence of an osmotic gradient but without hormone net transfer of water remains very small. On addition of hormone large net fluxes of water occur; the magnitude of which is linearly proportional to the osmotic gradient. The action of the hormone on movement of water is not dependent on the presence of sodium or on active transport of sodium. Comparison of the net transport of water and of unidirectional diffusion permeability of the membrane to water indicates that non-diffusional transport must predominate as the means by which net movement occurs in the presence of an osmotic gradient. An action of the hormone on the mucosal surface of the bladder wall is demonstrated. The effects of the hormone on water movement are most simply explained as an action to increase the permeability and porosity of the mucosal surface of the membrane.  相似文献   

19.
The isolated urinary bladder of the toad responds to neurohypophyseal hormone with a net increase of water transport from the mucosal to the serosal solution in the presence of an osmotic gradient. This response is mediated intracellularly by cyclic 3',5'-adenosine monophosphate (AMP). The present study demonstrates that hydroosmotically active substances such as oxytocin, dibutyryl cyclic 3',5'-AMP, and theophylline, but not hydroosmotically inactive substances, induce the uptake of horseradish peroxidase from the mucosal solution. Peroxidase taken up by the mucosal cells is demonstrable in small tubules and vesicles, and eventually accumulates in lysosomes. The uptake of peroxidase from the serosal solution into similar bodies in the mucosal cells is not hormone-dependent. It is also shown that peroxidase does not penetrate the tight junction from either the mucosal or serosal solution. These results extend previous findings which implicated the apical membrane of the mucosal epithelium as the site affected by neurohypophyseal hormones. A mechanism based on secretory phenomena is proposed as a framework for future investigations of apical membrane permeability changes and pinocytosis.  相似文献   

20.
THE high activities of the enzymes in nervous tissue regulating the metabolism of 3',5' adenosine monophosphate (cyclic AMP) and its apparent involvement in secretion from glands have prompted considerable speculation about its possible role in the release of transmitters from nerve endings1–4. There is some evidence that cyclic AMP is concerned in the release of acetylcholine from motor nerve endings1,3. It has been found, for example, that neuromuscular transmission is facilitated by catecholamines5,6 and methylxanthines1,3; noradrenaline is known to increase both the quantal content of the endplate potential6 and the level of cyclic AMP in nervous tissue7,8 and the increase in the quantal content is more marked in the presence of theophylline3. It was also found that increases in cyclic AMP concentration of up to thirty-fold occur in brain slices in the presence of 0.1-1 mM adenosine. We have therefore examined the effect of this substance on transmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号