首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The search for protein biomarkers has been a highly pursued topic in the proteomics community in the last decade. This relentless search is due to the constant need for validated biomarkers that could facilitate disease risk stratification, disease diagnosis, prognosis, monitoring as well as drug development, which ultimately would improve our quality of life. The recent development of proteomic technologies including the advancement of mass spectrometers with high sensitivity and speed has greatly advanced the discovery of potential biomarkers. One of the bottlenecks lies in the development of well-established verification assays to screen the biomarker candidates identified in the discovery stage. Recently, absolute quantitation using multiple-reaction monitoring mass spectrometry (MRM-MS) in combination with isotope-labeled internal standards has been extensively investigated as a tool for high-throughput protein biomarker verification. In this review, we describe and discuss recent developments and applications of MRM-MS methods for biomarker verification.  相似文献   

2.
Biomedical applications of protein chips   总被引:2,自引:0,他引:2  
The development of microchips involving proteins has accelerated within the past few years. Although DNA chip technologies formed the precedent, many different strategies and technologies have been used because proteins are inherently a more complex type of molecule. This review covers the various biomedical applications of protein chips in diagnostics, drug screening and testing, disease monitoring, drug discovery (proteomics), and medical research. The proteomics and drug discovery section is further subdivided to cover drug discovery tools (on-chip separations, expression profiling, and antibody arrays), molecular interactions and signaling pathways, the identification of protein function, and the identification of novel therapeutic compounds. Although largely focused on protein chips, this review includes chips involving cells and tissues as a logical extension of the type of data that can be generated from these microchips.  相似文献   

3.
Shotgun proteomics has become the standard proteomics technique for the large-scale measurement of protein abundances in biological samples. Despite quantitative proteomics has been usually performed using label-based approaches, label-free quantitation offers advantages related to the avoidance of labeling steps, no limitation in the number of samples to be compared, and the gain in protein detection sensitivity. However, since samples are analyzed separately, experimental design becomes critical. The exploration of spectral counting quantitation based on LC-MS presented here gathers experimental evidence of the influence of batch effects on comparative proteomics. The batch effects shown with spiking experiments clearly interfere with the biological signal. In order to minimize the interferences from batch effects, a statistical correction is proposed and implemented. Our results show that batch effects can be attenuated statistically when proper experimental design is used. Furthermore, the batch effect correction implemented leads to a substantial increase in the sensitivity of statistical tests. Finally, the applicability of our batch effects correction is shown on two different biomarker discovery projects involving cancer secretomes. We think that our findings will allow designing and executing better comparative proteomics projects and will help to avoid reaching false conclusions in the field of proteomics biomarker discovery.  相似文献   

4.
Xiao H  Wong DT 《Bioinformation》2010,5(7):294-296
Human saliva is a biological fluid with enormous diagnostic potential. Because saliva can be non-invasively collected, it provides an attractive alternative for blood, serum or plasma. It has been postulated that the blood concentrations of many components are reflected in saliva. Saliva harbors a wide array of proteins, which can be informative for the detection of diseases. Profiling the proteins in saliva over the course of disease progression could reveal potential biomarkers indicative of different stages of diseases, which may be useful in medical diagnostics. With advanced instrumentation and developed refined analytical techniques, proteomics is widely envisioned as a useful and powerful approach for salivary proteomic biomarker discovery. As proteomic technologies continue to mature, salivary proteomics have great potential for biomarker research and clinical applications. The progress and current status of salivary proteomics and its application in the biomarker discovery of oral and systematic diseases will be reviewed. The scientific and clinical challenges underlying this approach will also be discussed.  相似文献   

5.
Human saliva is a biological fluid with enormous diagnostic potential. Because saliva can be non-invasively collected, it provides an attractive alternative for blood, serum or plasma. It has been postulated that the blood concentrations of many components are reflected in saliva. Saliva harbors a wide array of proteins, which can be informative for the detection of diseases. Profiling the proteins in saliva over the course of disease progression could reveal potential biomarkers indicative of different stages of diseases, which may be useful in medical diagnostics. With advanced instrumentation and developed refined analytical techniques, proteomics is widely envisioned as a useful and powerful approach for salivary proteomic biomarker discovery. As proteomic technologies continue to mature, salivary proteomics have great potential for biomarker research and clinical applications. The progress and current status of salivary proteomics and its application in the biomarker discovery of oral and systematic diseases will be reviewed. The scientific and clinical challenges underlying this approach will also be discussed.  相似文献   

6.
7.
Prostate cancer is the most common non-cutaneous cancer in men in the United States. For reasons largely unknown, the incidence of prostate cancer has increased in the last two decades, in spite or perhaps because of a concomitant increase in serum prostate-specific antigen (PSA) screening. While PSA is acknowledged not to be an ideal biomarker for prostate cancer detection, it is however widely used by physicians due to lack of an alternative. Thus, the identification of a biomarker(s) that can complement or replace PSA represents a major goal for prostate cancer research. Screening complex biological specimens such as blood, urine, and tissue to identify protein biomarkers has become increasingly popular over the last decade thanks to advances in proteomic discovery methods. The completion of human genome sequence together with new development in mass spectrometry instrumentation and bioinformatics has been a major driving force in biomarker discovery research. Here we review the current state of proteomic applications as applied to various sample sources including blood, urine, tissue, and “secretome” for the purpose of prostate cancer biomarker discovery. Additionally, we review recent developments in validation of putative markers, efforts at systems biology approach, and current challenges of proteomics in biomarker discovery.  相似文献   

8.
Antibody‐based proteomics play a very important role in biomarker discovery and validation, facilitating the high‐throughput evaluation of candidate markers. Most proteomics‐driven discovery is nowadays based on the use of MS. MS has many advantages, including its suitability for hypothesis‐free biomarker discovery, since information on protein content of a sample is not required prior to analysis. However, MS presents one main caveat which is the limited sensitivity in complex samples, especially for body fluids, where protein expression covers a huge dynamic range. Antibody‐based technologies remain the main solution to address this challenge since they reach higher sensitivity. In this article, we review the benefits and limitations of antibody‐based proteomics in preclinical and clinical biomarker research for discovery and validation in body fluids and tissue. The combination of antibodies and MS, utilizing the best of both worlds, opens new avenues in biomarker research.  相似文献   

9.
Large-scale protein quantification has become a major proteomics application in many areas of biological and medical research. During the past years, different techniques have been developed, including gel-based such as differential in-gel electrophoresis (DIGE) and liquid chromatography-based such as isotope labeling and label-free quantification. These quantitative proteomics tools hold significant promise for biomarker discovery, diagnostic and therapeutic applications. They are also important for research in functional genomics and systems biology towards basic understanding of molecular networks and pathway interactions. In this review, we summarize current technologies in quantitative proteomics and discuss recent applications of the technologies.  相似文献   

10.
There is an urgent need for novel biomarkers that can be used to improve the diagnosis, predict the disease progression, improve our understanding of the pathology or serve as therapeutic targets for neurodegenerative diseases. Cerebrospinal fluid (CSF) is in direct contact with the CNS and reflects the biochemical state of the CNS under different physiological and pathological settings. Because of this, CSF is regarded as an excellent source for identifying biomarkers for neurological diseases and other diseases affecting the CNS. Quantitative proteomics and sophisticated computational software applied to analyze the protein content of CSF has been fronted as an attractive approach to find novel biomarkers for neurological diseases. This review will focus on some of the potential pitfalls in biomarker studies using CSF, summarize the status of the field of CSF proteomics in general, and discuss some of the most promising proteomics biomarker study approaches. A brief status of the biomarker discovery efforts in multiple sclerosis, Alzheimer's disease, and Parkinson's disease is also given.  相似文献   

11.
An enormous amount of research effort has been devoted to biomarker discovery and validation. With the completion of the human genome, proteomics is now playing an increasing role in this search for new and better biomarkers. Here, what leads to successful biomarker development is reviewed and how these features may be applied in the context of proteomic biomarker research is considered. The “fit‐for‐purpose” approach to biomarker development suggests that untargeted proteomic approaches may be better suited for early stages of biomarker discovery, while targeted approaches are preferred for validation and implementation. A systematic screening of published biomarker articles using MS‐based proteomics reveals that while both targeted and untargeted technologies are used in proteomic biomarker development, most researchers do not combine these approaches. i) The reasons for this discrepancy, (ii) how proteomic technologies can overcome technical challenges that seem to limit their translation into the clinic, and (iii) how MS can improve, complement, or replace existing clinically important assays in the future are discussed.  相似文献   

12.
Figeys D 《Proteomics》2002,2(4):373-382
The impact of proteomics as a discovery engine in life science and in drug discovery has increased tremendously over the last seven years. At the same time, proteomics has expanded from the initial trust as a two-dimensional gel based approach to cover more functional and structural properties of proteins. The development of lab-on-a-chip and protein arrays for proteomics will have to evolve with the changes in proteomics to stay relevant. Here, we review the changes in the field of proteomics and their impact on the development in protein arrays and lab-on-a-chip.  相似文献   

13.
Vascular proteomics is providing two main types of data: proteins that actively participate in vascular pathophysiological processes and novel protein candidates that can potentially serve as useful clinical biomarkers. Although both types of proteins can be identified by similar proteomic strategies and methods, it is important to clearly distinguish biomarkers from mediators of disease. A particular protein, or group of proteins, may participate in a pathogenic process but not serve as an effective biomarker. Alternatively, a useful biomarker may not mediate pathogenic pathways associated with disease (i.e., C-reactive protein). To date, there are no clear successful examples in which discovery proteomics has led to a novel useful clinical biomarker in cardiovascular diseases. Nevertheless, new sources of biomarkers are being explored (i.e., secretomes, circulating cells, exosomes and microparticles), an increasing number of novel proteins involved in atherogenesis are constantly described, and new technologies and analytical strategies (i.e., quantitative proteomics) are being developed to access low abundant proteins. Therefore, this presages a new era of discovery and a further step in the practical application to diagnosis, prognosis and early action by medical treatment of cardiovascular diseases.  相似文献   

14.
15.
The excitement associated with clinical applications of proteomics was initially focused on its potential to serve as a vehicle for both biomarker discovery and drug discovery and routine clinical sample analysis. Some approaches were thought to be able to "identify" mass spectral characteristics that distinguished between control and disease samples, and thereafter it was believed that the same tool could be employed to screen samples in a high-throughput clinical setting. However, this has been difficult to achieve, and the early promise is yet to be fully realized. While we see an important place for mass spectrometry in drug and biomarker discovery, we believe that alternative strategies will prove more fruitful for routine analysis. Here we discuss the power and versatility of 2D gels and mass spectrometry in the discovery phase of biomarker work but argue that it is better to rely on immunochemical methods for high-throughput validation and routine assay applications.  相似文献   

16.
Nutriproteomics is a nascent research arena, exploiting the dynamics of proteomic tools to characterize molecular and cellular changes in protein expression and function on a global level as well as judging the interaction of proteins with food nutrients. As nutrients are present in complex mixtures, the bioavailability and functions of each nutrient can be influenced by the presence of other nutrients/compounds and interactions. The first half of this review focuses on the techniques used as nutriproteomic tools for identification, quantification, characterization and analyses of proteins including, two-dimensional polyacrylamide electrophoresis, chromatography, mass spectrometry, microarray and other emerging technologies involving visual proteomics. The second half narrates the potential of nutriproteomics in medical and nutritional research for revolutionizing biomarker and drug development, nutraceutical discovery, biological process modeling, preclinical nutrition linking diet and diseases and structuring ways to a personalized nutrition. Though several challenges such as protein dynamics, analytical complexity, cost and resolution still exist, the scope of applying proteomics to nutrition is rapidly expanding and promising as more holistic strategies are emerging.  相似文献   

17.
Here, we report on our proteomic studies in the field of cardiovascular medicine. Our research has been focused on understanding the role of proteins in cardiovascular disease with a particular focus on epigenetic regulation and biomarker discovery, with the objective of better understanding cardiovascular pathophysiology to lead to the development of new and better diagnostic and therapeutic methods. We have used mass spectrometry for over 5 years as a viable method to investigate protein-protein interactions and post-translational modifications in cellular proteins as well as a method to investigate the role of extra-cellular proteins. Use of mass spectrometry not only as a research tool but also as a potential diagnostic tool is a topic of interest. In addition to these functional proteomics studies, structural proteomic studies are also done with expectations to allow for pinpoint drug design and therapeutic intervention. Collectively, our proteomics studies are focused on understanding the functional role and potential therapeutically exploitable property of proteins in cardiovascular disease from both intra-cellular and extra-cellular aspects with both functional as well as structural proteomics approaches to allow for comprehensive analysis.  相似文献   

18.
Much attention has been given to protein biomarker discovery in the field of proteomics in the past few years. Proteomic strategies for biomarker discovery normally include the identification of proteins that alter during the progression of a particular disease state in high throughput. To perform these studies requires the ability to measure changes of low-abundance proteins in highly complex mixtures from different biological states. Soluble polymer-based isotope labeling (SoPIL) is a new proteomics strategy that targets specific classes of proteins for isotopic labeling, efficient isolation and accurate quantitation by mass spectrometry. The method exploits the features of homogenous solution-phase reaction, simple solid-phase extraction and characteristic cell-permeable nanoparticles. Recent applications demonstrate that the SoPIL reagents are ideal for quantitative proteomics and phosphoproteomics, and could have the potential to discover disease markers in the most physiologically relevant settings.  相似文献   

19.
Towards revolutionary biomarkers, a considerable amount of research funds and time have been dedicated to proteomics. Although the discovery of novel biomarkers at the dawn of proteomics was a promising development, only a few identified biomarkers seemed to be beneficial for cancer patients. We may need to approach this issue differently, instead of only extending the conventional approaches that have been used historically. The study of biomarkers is essentially a study of diseases and the biochemistry relating to peptide, protein and post-translational modifications is only a tool. A problem-oriented approach should be needed in biomarker development. Clinician participation in the study of biomarkers will lead to realistic, practical and interesting biomarker candidates, which justify the time and expense involved in validation studies. Although discussion in this article is focused on cancer biomarkers, it can generally be applied to biomarker studies for other diseases.  相似文献   

20.
Much attention has been given to protein biomarker discovery in the field of proteomics in the past few years. Proteomic strategies for biomarker discovery normally include the identification of proteins that alter during the progression of a particular disease state in high throughput. To perform these studies requires the ability to measure changes of low-abundance proteins in highly complex mixtures from different biological states. Soluble polymer-based isotope labeling (SoPIL) is a new proteomics strategy that targets specific classes of proteins for isotopic labeling, efficient isolation and accurate quantitation by mass spectrometry. The method exploits the features of homogenous solution-phase reaction, simple solid-phase extraction and characteristic cell-permeable nanoparticles. Recent applications demonstrate that the SoPIL reagents are ideal for quantitative proteomics and phosphoproteomics, and could have the potential to discover disease markers in the most physiologically relevant settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号