首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria have devised sophisticated signaling systems for elicitinga variety of adaptive responses to their environment, whichare generally referred to as the "two-component regulatory system."The widespread occurrence of the two-component systems in bothprokaryotes and eukaryotes implies that it is a powerful devicefor a wide variety of adaptive responses of cells to their environment.The two-component signal transducers contain one or more ofthree conserved and characteristic phosphotransfer signalingdomains, named the "transmitter, receiver, and alternative transmitter."The recently determined entire genomic sequence of Synechocystissp. strain PCC 6803 allowed us to compile systematically a completelist of genes encoding such two-component signal transductionproteins. The results of such an effort, made in this study,revealed that at least 80 ORFs were identified as members ofthe two-component signal transducers in this single speciesof cyanobacteria.  相似文献   

2.
3.
Within the framework of an international Bacillus subtilis genomesequencing project, we have determined a 36-kb sequence coveringthe region between the gntZ and trnY genes. In addition to fivegenes sequenced and characterized previously, 27 putative proteincoding sequences (open reading frame; ORF) were identified.A homology search for the newly identified ORFs revealed thatsix of them had similarities to known proteins. It is notablethat new ORFs belonging to response-regulator aspartate phosphatase(Rap) and its regulator (Phr) families, and response regulatorand sensory kinase families of two-component signal transductionsystems have been identified. Furthermore, we found that some180-bp non-coding sequence, that might be an remnant of an ancientIS element, is preserved in at least five loci of the B. subtilisgenome.  相似文献   

4.
Within the framework of an international project for the sequencingof the entire Bacillus subtilis genome, a 36-kb chromosome segment,which covers the region between the gnt and iol operons, hasbeen cloned and sequenced. This region (36447 bp) contains 33complete open reading frames (ORFs; genes) including the fourgnt genes and one partial gene. A homology search for the productsof the 33 complete ORFs revealed significant homology to knownproteins in 16 of them such as tetracycline resistance protein(Clostridium perfringens), asparagine synthetase (Arabidopsisthaliana), aldehyde dehydrogenase (Pseudomonas oleovorans),2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase (P. paucimobilis),heat shock protein HtpG (Escherichia coli), galactose-protonsymporter (E. coli), auxin-induced protein (common tobacco),glucitol operon repressor (E. coli) and methylmalonate-semialdehydedehydrogenase (P. aeruginosa). Unlike the regions we sequencedso far, this region contained two short sequence multiplications:one was a tandem sequence duplication (409 and 410 bp), andthe other a triplication consisting of two highly conserved118-bp tandem sequences preceded by a less conserved similarsequence (129 bp). The reasons for the presence of these sequencemultiplications in the gnt to iol region were deduced.  相似文献   

5.
6.
Two-component systems in plant signal transduction   总被引:16,自引:0,他引:16  
In plants, two-component systems play important roles in signal transduction in response to environmental stimuli and growth regulators. Genetic and biochemical analyses indicate that sensory hybrid-type histidine kinases, ETR1 and its homologs, function as ethylene receptors and negative regulators in ethylene signaling. Two other hybrid-type histidine kinases, CKI1 and ATHK1, are implicated in cytokinin signaling and osmosensing processes, respectively. A data base search of Arabidopsis ESTs and genome sequences has identified many homologous genes encoding two-component regulators. We discuss the possible origins and functions of these two-component systems in plants.  相似文献   

7.
Genome sequencing has revealed that signal transduction in bacteria makes use of a limited number of different devices, such as two-component systems, LuxI-LuxR quorum-sensing systems, phosphodiesterases, Ser-Thr (serine-threonine) kinases, OmpR-type regulators, and sigma factor-anti-sigma factor pathways. These systems use modular proteins with a large variety of input and output domains, yet strikingly conserved transmission domains. This conservation might lead to redundancy of output function, for example, via crosstalk (i.e. phosphoryl transfer from a non-cognate sensory kinase). The number of similar devices in a single cell, particularly of the two-component type, might amount to several dozen, and most of these operate in parallel. This could bestow bacteria with cellular intelligence if the network of two-component systems in a single cell fulfils the requirements of a neural network. Testing these ideas poses a great challenge for prokaryotic systems biology.  相似文献   

8.
The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005) were searched for the presence of potential two-component open reading frames (ORFs) using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005) and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events.  相似文献   

9.
The recombinant expression of eukaryotic proteins in Escherichia coli often results in protein aggregation. Several articles report on improved solubility and increased purification yields of individual proteins upon over-expression of E. coli chaperones but this effect might potentially be protein-specific. To find out whether chaperone over-expression is a generally applicable strategy for the production of human protein kinases in E. coli, we analyzed 10 kinases, mainly as catalytic domain constructs. The kinases studied, namely c-Src, c-Abl, Hck, Lck, Igf1R, InsR, KDR, c-Met, b-Raf and Irak4, belong to the tyrosine and tyrosine kinase-like groups of kinases. Upon over-expression of the E. coli chaperones DnaK/DnaJ/GrpE and GroEL/GroES, the yields of 7 from 10 polyhistidine-tagged kinases were increased up to 5-fold after nickel-affinity purification (IMAC). Additive over-expression of the chaperones ClpB and/or trigger factor showed no further improvement. Co-purification of DnaJ and GroEL indicated incomplete kinase folding, therefore, the oligomerization state of the kinases was determined by size-exclusion chromatography. In our study, kinases behave in three different ways. Kinases where yields are not affected by E. coli chaperone over-expression e.g. c-Src elute in the monomeric fraction (category I). Although IMAC yields increase upon chaperone over-expression, InsR and b-Raf kinase are present as soluble aggregates (category II). Igf1R and c-Met kinase catalytic domains are partially complexed with E. coli chaperones upon over-expression; however, they show 2-fold increased yields of monomer (category III). Together, our results suggest that the benefits of chaperone over-expression on the production of protein kinases in E. coli are indeed case-specific.  相似文献   

10.

Background  

The KdpD/KdpE two-component system of Escherichia coli regulates expression of the kdpFABC operon encoding the high affinity K+ transport system KdpFABC. The input domain of KdpD comprises a domain that belongs to the family of universal stress proteins (Usp). It has been previously demonstrated that UspC binds to this domain, resulting in KdpD/KdpE scaffolding under salt stress. However the mechanistic significance of this domain for signaling remains unclear. Here, we employed a "domain swapping" approach to replace the KdpD-Usp domain with four homologous domains or with the six soluble Usp proteins of E. coli.  相似文献   

11.
Within the framework of an international project for the sequencingof the entire Bacillus subtilis genome, a 23-kb chromosomalsegment, which covers the region between the iol and hut operons,has been cloned and sequenced, creating a 99-kb contig fromthe gnt operon to the wapA locus. This region (23351 bp) contains25 complete open reading frames (ORFs; genes) including deoR,dra, nupC and pdp and two partial ones. The region (5140 bp)containing these four genes, being also sequenced by H. H. Saxildet al., was sequenced by subjecting a long polymerase chainreaction product to random sequencing using phage M13mp19. However,we could detect no conflict, between two independently determinedsequences, which could be attributed to our sequencing method.A homology search for the 24 newly identified gene productsrevealed significant homology to known proteins in 14 of them.It was notable that three proteins, encoded by the successivegenes (yxeMNO), exhibited meaningful homology to the E. coliGlnHPQ products constituting a periplasmic ATP-dependent transportsystem for glutamine.  相似文献   

12.
Protein kinases play important roles in almost all major signaling and regulatory pathways of eukaryotic organisms. Members in the family of protein kinases make up a substantial fraction of eukaryotic proteome. Analysis of the protein kinase repertoire (kinome) would help in the better understanding of the regulatory processes. In this article, we report the identification and analysis of the repertoire of protein kinases in the intracellular parasite Entamoeba histolytica. Using a combination of various sensitive sequence search methods and manual analysis, we have identified a set of 307 protein kinases in E. histolytica genome. We have classified these protein kinases into different subfamilies originally defined by Hanks and Hunter and studied these kinases further in the context of noncatalytic domains that are tethered to catalytic kinase domain. Compared to other eukaryotic organisms, protein kinases from E. histolytica vary in terms of their domain organization and displays features that may have a bearing in the unusual biology of this organism. Some of the parasitic kinases show high sequence similarity in the catalytic domain region with calmodulin/calcium dependent protein kinase subfamily. However, they are unlikely to act like typical calcium/calmodulin dependent kinases as they lack noncatalytic domains characteristic of such kinases in other organisms. Such kinases form the largest subfamily of kinases in E. histolytica. Interestingly, a PKA/PKG-like subfamily member is tethered to pleckstrin homology domain. Although potential cyclins and cyclin-dependent kinases could be identified in the genome the likely absence of other cell cycle proteins suggests unusual nature of cell cycle in E. histolytica. Some of the unusual features recognized in our analysis include the absence of MEK as a part of the Mitogen Activated Kinase signaling pathway and identification of transmembrane region containing Src kinase-like kinases. Sequences which could not be classified into known subfamilies of protein kinases have unusual domain architectures. Many such unclassified protein kinases are tethered to domains which are Cysteine-rich and to domains known to be involved in protein-protein interactions. Our kinome analysis of E. histolytica suggests that the organism possesses a complex protein phosphorylation network that involves many unusual kinases.  相似文献   

13.
The biochemical mechanism by which the phytochrome family of plant sensory photoreceptors transmit perceived informational light signals downstream to transduction pathway components is undetermined. The recent sequencing of the entire genome of the cyanobacterium Synechocystis, however, has revealed a protein that has an NH2-terminal domain with striking sequence similarity to the photosensory NH2-terminal domain of the phytochromes, and a COOH-terminal domain strongly related to the transmitter histidine kinase module of bacterial two-component sensors. The Synechocystis protein is capable of autocatalytic chromophore ligation and exhibits photoreversible light-absorption changes analogous to the phytochromes, indicating its capacity to function as an informational photoreceptor. Together with earlier observations that the COOH-terminal domains of the plant phytochromes also have sequence similarity to the histidine kinases, these data suggest that the cyanobacteria utilize photoregulated histidine kinases as a sensory system and that the plant phytochromes may be evolutionary descendants of these photoreceptors.  相似文献   

14.
A genomics-based approach was used to identify the entire gene complement of putative two-component signal transduction systems (TCSTSs) in Streptococcus pneumoniae. A total of 14 open reading frames (ORFs) were identified as putative response regulators, 13 of which were adjacent to genes encoding probable histidine kinases. Both the histidine kinase and response regulator proteins were categorized into subfamilies on the basis of phylogeny. Through a systematic programme of mutagenesis, the importance of each novel TCSTS was determined with respect to viability and pathogenicity. One TCSTS was identified that was essential for the growth of S. pneumoniaeThis locus was highly homologous to the yycFG gene pair encoding the essential response regulator/histidine kinase proteins identified in Bacillus subtilis and Staphylococcus aureus. Separate deletions of eight other loci led in each case to a dramatic attenuation of growth in a mouse respiratory tract infection model, suggesting that these signal transduction systems are important for the in vivo adaptation and pathogenesis of S. pneumoniae. The identification of conserved TCSTSs important for both pathogenicity and viability in a Gram-positive pathogen highlights the potential of two-component signal transduction as a multicomponent target for antibacterial drug discovery.  相似文献   

15.
Two-component signal transduction systems are the main mechanism by which bacteria sense and respond to their environment, and their membrane-located histidine protein kinases generally constitute the sensory components of these systems. Relatively little is known about their fundamental mechanisms and precise nature of the molecular signals sensed, because of the technical challenges of producing sufficient quantities of these hydrophobic membrane proteins. This study evaluated the heterologous production, purification and activities of the 16 intact membrane sensor kinases of Enterococcus faecalis. Following the cloning of the genes into expression plasmid pTTQ18His, all but one kinase was expressed successfully in Escherichia coli inner membranes. Purification of the hexa-histidine ‘tagged’ recombinant proteins was achieved for 13, and all but one were verified as intact. Thirteen intact kinases possessed autophosphorylation activity with no added signal when assayed in membrane vesicles or as purified proteins. Signal testing of two functionally-characterized kinases, FsrC and VicK, was successful examplifying the potential use of in vitro activity assays of intact proteins for systematic signal identification. Intact FsrC exhibited an approximately 10-fold increase in activity in response to a two-fold molar excess of synthetic GBAP pheromone, whilst glutathione, and possibly redox potential, were identified for the first time as direct modulators of VicK activity in vitro. The impact of DTT on VicK phosphorylation resulted in increased levels of phosphorylated VicR, the downstream response regulator, thereby confirming the potential of this in vitro approach for investigations of modulator effects on the entire signal transduction process of two-component systems.  相似文献   

16.
Cytokinin signaling: two-components and more   总被引:1,自引:0,他引:1  
  相似文献   

17.
The regulation of signal transduction by phosphorylation and ubiquitination is essential to ensure the correct behavior of eukaryotic cells. We searched for protein families involved in such signaling in several eukaryotic species and in a limited set of prokaryotes, where two members of the Planctomycetes phylum were included as they exhibit eukaryote-like features (Gemmata obscuriglobus and Pirellula staleyi). We identified sequences homologous to eukaryotic serine/threonine kinases (STKs) and E2-ubiquitin conjugating enzymes in the two Planctomycetes species. To extend these analyses to the Planctomycetes/Verrucomicrobia/Chlamydia super-phylum, we performed comparative analyses using domains from kinases, phosphatases and GTPases that serve as signaling signatures, and we analyzed their distributions. We found substantial differences in kinome densities with regards to other prokaryote clades and among the groups in the Planctomycetes/Verrucomicrobia/Chlamydia super-phylum. In addition, we identified the presence of classic eukaryotic E2-conjugating ubiquitin proteins in prokaryotes, these having previously believed to exist only in eukaryotes. Our phylogenetic analyses of the STKs signature domains and E2-enzymes suggest the existence of horizontal gene transfer.  相似文献   

18.
19.
Cyanobacteria belong to an extremely diverse group of gram-negative prokaryotes. They are all able to perform oxygen-evolving photosynthesis, but differ in morphology, ecological habitats, and physiology. This diversity is also reflected in the complexity of regulatory proteins involved in protein phosphorylation on Ser, Thr and Tyr residues. For those strains whose genomes are completely sequenced, for example, the number of genes identified so far that encode Ser/Thr and Tyr kinases range from none to 52. Genetic, molecular as well as functional genomic analyses demonstrate that Ser/Thr and Tyr kinases and phosphatases are involved in the regulation of a variety of activities according to changes in growth conditions or cell metabolism, such as cell motility, carbon and nitrogen metabolism, photosynthesis and stress response. The major challenge in the near future is to integrate these components into signaling pathways and identify their targets. Some of the Ser/Thr and Tyr kinases and phosphatases are expected to interact with classical two-component signaling pathways.  相似文献   

20.
Novel domains of the prokaryotic two-component signal transduction systems   总被引:31,自引:0,他引:31  
The archetypal two-component signal transduction systems include a sensor histidine kinase and a response regulator, which consists of a receiver CheY-like domain and a DNA-binding domain. Sequence analysis of the sensor kinases and response regulators encoded in complete bacterial and archaeal genomes revealed complex domain architectures for many of them and allowed the identification of several novel conserved domains, such as PAS, GAF, HAMP, GGDEF, EAL, and HD-GYP. All of these domains are widely represented in bacteria, including 19 copies of the GGDEF domain and 17 copies of the EAL domain encoded in the Escherichia coli genome. In contrast, these novel signaling domains are much less abundant in bacterial parasites and in archaea, with none at all found in some archaeal species. This skewed phyletic distribution suggests that the newly discovered complexity of signal transduction systems emerged early in the evolution of bacteria, with subsequent massive loss in parasites and some horizontal dissemination among archaea. Only a few proteins containing these domains have been studied experimentally, and their exact biochemical functions remain obscure; they may include transformations of novel signal molecules, such as the recently identified cyclic diguanylate. Recent experimental data provide the first direct evidence of the participation of these domains in signal transduction pathways, including regulation of virulence genes and extracellular enzyme production in the human pathogens Bordetella pertussis and Borrelia burgdorferi and the plant pathogen Xanthomonas campestris. Gene-neighborhood analysis of these new domains suggests their participation in a variety of processes, from mercury and phage resistance to maintenance of virulence plasmids. It appears that the real picture of the complexity of phosphorelay signal transduction in prokaryotes is only beginning to unfold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号