首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cytotherapy》2014,16(12):1643-1655
Background aimsOsteoporosis (OP) is characterized by a reduction in bone quality, which is associated with inadequacies in bone marrow mesenchymal stromal cells (BMSCs). As an alternative cell source to BMSCs, adipose-derived stem cells (ASCs) have been investigated for bone repair because of their osteogenic potential and self-renewal capability. Nevertheless, whether autologous ASCs can be used to promote bone regeneration under osteoporotic conditions has not been elucidated.MethodsThe OP rabbit model was established by means of bilateral ovariectomy (OVX). Both BMSCs and ASCs were harvested from OVX rabbits and expanded in vitro. The effects of osteogenic-induced ASCs on the in vitro adipogenic and osteogenic capabilities of BMSCs were evaluated. Autologous ASCs were then encapsulated by calcium alginate gel and transplanted into the distal femurs of OVX rabbits (n = 12). Hydrogel without loading cells was injected into the contralateral femurs as a control. Animals were killed for investigation at 12 weeks after transplantation.ResultsOsteogenic-induced ASCs were able to promote osteogenesis and inhibit adipogenesis of osteoporotic BMSCs through activation of the bone morphogenetic protein 2/bone morphogenetic protein receptor type IB signal pathway. Local bone mineral density began to increase at 8 weeks after ASC transplantation (P < 0.05). At 12 weeks, micro–computed tomography and histological evaluation revealed more new bone formation in the cell-treated femurs than in the control group (P < 0.05).ConclusionsThis study demonstrated that ASCs could stimulate proliferation and osteogenic differentiation of BMSCs in vitro and enhance bone regeneration in vivo, which suggests that autologous osteogenic-induced ASCs might be useful to alleviate OP temporally.  相似文献   

2.
Tissue engineering provides new potential treatments for the repair of bone defects. Bone-marrow-derived mesenchymal stem cells (BMSCs) represent an attractive cell source for therapeutic applications involving tissue engineering, although disadvantages, such as pain of harvest and low proliferation efficiency, are major limitations to the application of BMSCs in the clinic. Adipose-derived stem cells (ASCs) with their multilineage potential and satisfactory proliferation potential can be induced into the osteogenic lineage in vitro and can be anchored onto suitable scaffolds as seed cells to repair bone defects successfully in an autologous setting. Previous studies have indicated that both undifferentiated BMSCs and ASCs exhibit immunosuppression and immunoprivilege properties. We compare the immuno-function of undifferentiated and osteo-differentiated ASCs in vitro and explore the feasibility of applying allogeneic ASCs to the repair of ulnar bone defects in the rabbit model. Our study demonstrates that allogeneic osteogenic differentiated ASCs maintain low immunogenicity and negative immunomodulation. The allogeneic osteogenic differentiated ASCs combined with demineralized bone matrix successfully regenerate ulnar bone defects in rabbits without immunosuppressive therapies.  相似文献   

3.
程飞飞  杨智  钱程 《生物工程学报》2014,30(10):1515-1521
去分化脂肪(Dedifferentiated fat,DFAT)细胞是由人体内含量最丰富的成熟脂肪细胞经体外天花板法培养去分化而来。研究发现:DFAT细胞具有均一性高、对供者年龄要求较低等脂肪来源干细胞(Adipose-derived stem cells,ASCs)和骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)所不具有的优势。此外,它还具有体内外成脂、成软骨、成骨、成肌、成神经等多向分化能力以及免疫调节能力。作为具有潜力的组织工程及同种异体干细胞移植的优秀种子细胞,DFAT细胞在治疗骨缺损、神经性疾病、局部缺血性心脏病及肾脏疾病等方面均具有较好的应用前景,对其开展深入的研究具有重要的理论和实践意义。文中从免疫学性质、多向分化能力及临床应用潜力等方面对DFAT细胞的研究进展作一综述。  相似文献   

4.
Presently, bone marrow is considered as a prime source of mesenchymal stem cells; however, there are some drawbacks and limitations. Compared with other mesenchymal stem cell (MSC) sources, gingiva‐derived mesenchymal stem cells (GMSCs) are abundant and easy to obtain through minimally invasive cell isolation techniques. In this study, MSCs derived from gingiva and bone marrow were isolated and cultured from mice. GMSCs were characterized by osteogenic, adipogenic and chondrogenic differentiation, and flow cytometry. Compared with bone marrow MSCs (BMSCs), the proliferation capacity was judged by CCK‐8 proliferation assay. Osteogenic differentiation was assessed by ALP staining, ALP assay and Alizarin red staining. RT‐qPCR was performed for ALP, OCN, OSX and Runx2. The results indicated that GMSCs showed higher proliferative capacity than BMSCs. GMSCs turned more positive for ALP and formed a more number of mineralized nodules than BMSCs after osteogenic induction. RT‐qPCR revealed that the expression of ALP, OCN, OSX and Runx2 was significantly increased in the GMSCs compared with that in BMSCs. Moreover, it was found that the number of CD90‐positive cells in GMSCs elevated more than that of BMSCs during osteogenic induction. Taking these results together, it was indicated that GMSCs might be a promising source in the future bone tissue engineering.  相似文献   

5.
Adipose tissue is composed of lipid‐filled mature adipocytes and a heterogeneous stromal vascular fraction (SVF) population of cells. Similarly, the bone marrow (BM) is composed of multiple cell types including adipocytes, hematopoietic, osteoprogenitor, and stromal cells necessary to support hematopoiesis. Both adipose and BM contain a population of mesenchymal stromal/stem cells with the potential to differentiate into multiple lineages, including adipogenic, chondrogenic, and osteogenic cells, depending on the culture conditions. In this study we have shown that human adipose‐derived stem cells (ASCs) and bone marrow mesenchymal stem cells (BMSCs) populations display a common expression profile for many surface antigens, including CD29, CD49c, CD147, CD166, and HLA‐abc. Nevertheless, significant differences were noted in the expression of CD34 and its related protein, PODXL, CD36, CD 49f, CD106, and CD146. Furthermore, ASCs displayed more pronounced adipogenic differentiation capability relative to BMSC based on Oil Red staining (7‐fold vs. 2.85‐fold induction). In contrast, no difference between the stem cell types was detected for osteogenic differentiation based on Alizarin Red staining. Analysis by RT‐PCR demonstrated that both the ASC and BMSC differentiated adipocytes and osteoblast displayed a significant upregulation of lineage‐specific mRNAs relative to the undifferentiated cell populations; no significant differences in fold mRNA induction was noted between ASCs and BMSCs. In conclusion, these results demonstrate human ASCs and BMSCs display distinct immunophenotypes based on surface positivity and expression intensity as well as differences in adipogenic differentiation. The findings support the use of both human ASCs and BMSCs for clinical regenerative medicine. J. Cell. Physiol. 226: 843–851, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
Bone morphogenetic protein (BMP)2/7 heterodimer shows greater efficacy in enhancing bone regeneration. However, the precise mechanism and the role of mitogen-activated protein kinase (MAPK) signaling network in BMP2/7-driven osteogenesis remain ambiguous. In this study, we evaluated the effects of BMP2/7 heterodimers on osteoblastic differentiation in rat bone marrow mesenchymal stem cells (BMSCs), with the aim to elaborate how MAPKs might be involved in this cellular process by treatment of rat BMSCs with BMP2/-7 with a special signal-pathway inhibitor. We found that BMP2/7 heterodimer induced a much stronger osteogenic response in rat BMSCs compared with either homodimer. Most interestingly, extracellular signal-regulated kinase (ERK) demonstrated a highly sustained phosphorylation and activation in the BMP2/7 heterodimer treatment groups, and inhibition of ERK cascades using U0126 special inhibitor that significantly reduced the activity of ALP and calcium mineralization to a substantial degree in rat BMSCs treated with BMP2/7 heterodimers. Collectively, we demonstrate that BMP2/7 heterodimer shows a potent ability to stimulate osteogenesis in rat BMSCs. The activated ERK signaling pathway involved in this process may contribute partially to an increased osteogenic potency of heterodimeric BMP2/7 growth factors.  相似文献   

8.
Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians.Current failures of autografts and allografts in many pathological conditions have prompted researchers to find new biomaterials able to promote bone repair or regeneration with specific characteristics of biocompatibility,biodegradability and osteoinductivity.Recent advancements for tissue regeneration in bone defects have occurred by following the diamond concept and combining the use of growth factors and mesenchymal stem cells(MSCs).In particular,a more abundant and easily accessible source of MSCs was recently discovered in adipose tissue.These adipose stem cells(ASCs)can be obtained in large quantities with little donor site morbidity or patient discomfort,in contrast to the invasive and painful isolation of bone marrow MSCs.The osteogenic potential of ASCs on scaffolds has been examined in cell cultures and animal models,with only a few cases reporting the use of ASCs for successful reconstruction or accelerated healing of defects of the skull and jaw in patients.Although these reports extend our limited knowledge concerning the use of ASCs for osseous tissue repair and regeneration,the lack of standardization in applied techniques makes the comparison between studies difficult.Additional clinical trials are needed to assess ASC therapy and address potential ethical and safety concerns,which must be resolved to permit application in regenerative medicine.  相似文献   

9.
Mesenchymal stem cells (MSCs) are a major component of various forms of tissue engineering. MSCs have self-renewal and multidifferential potential. Osteogenic differentiation of MSCs is an area of attention in bone regeneration. One form of MSCs are adipose-derived stem cells (ASCs), which can be simply harvested and differentiated into several cell lineages, such as chondrocytes, adipocytes, or osteoblasts. Due to special properties, ASCs are frequently used in vitro and in vivo bone regeneration. Identifying factors involved in osteogenic differentiation of ASCs is important for better understanding the mechanism of osteogenic differentiation. Different methods are used to stimulate osteogenesis of ASCs in literature, including common osteogenic media, growth factors, hormones, hypoxia, mechanical and chemical stimuli, genetic modification, and nanotechnology. This review article provides an overview describing the isolation procedure, characterization, properties, current methods for osteogenic differentiation of ASCs, and their basic biological mechanism.  相似文献   

10.
Oxidative stress, a hallmark of ageing, inhibits the osteogenic differentiation of bone marrow‐derived mesenchymal stem cells in long bone. The dysfunction of the cellular antioxidant defence system is a critical cause of oxidative stress, but the mechanism of the decline of antioxidant defence in senescent stem cells remains elusive. Here, we found that EZH2, an epigenetic regulator of histone methylation, acted as a suppressor of the antioxidative defence system in BMSCs from the femur. The increased EZH2 led to a decrease in the levels of antioxidant enzymes and exaggerated oxidative damage in aged BMSCs, resulting in the defect of bone formation and regeneration. Mechanistically, EZH2 enhanced the modification of H3K27me3 on the promoter of Foxo1 and suppressed its function to activate the downstream genes in antioxidant defence. Moreover, epigenetic therapy targeting EZH2‐mediated H3K27me3 modification largely recovered the antioxidant defence in BMSCs and attenuate oxidative damage, leading to the recovery of the osteogenesis in old BMSCs. Taken together, our findings revealed novel crosstalk between histone epigenetic modification and oxidative stress during stem cell ageing, suggesting a possibility of epigenetic therapy in the recovery of BMSCs senescence and treatment of age‐related bone disease.  相似文献   

11.
骨髓间充质干细胞具有自我复制、未分化的特点,并可在不同条件下分化为中胚层起源的多种细胞,是一种成体多能干细胞。就组织工程而言,良好的种子细胞是组织工程技术的关键,骨髓间充质干细胞的性质决定了其在骨组织工程领域中的重要地位。此外,骨骼系统属于机体的运动系统,承担体重是骨骼的重要功能之一;而且,人体内几乎所有的细胞都会受到力学因素的影响,故有必要研究力学因素对骨髓间充质干细胞诱导分化为成骨细胞的作用,为骨髓间充质干细胞的体外扩增、诱导分化及培养提供一种新途径。  相似文献   

12.
Bone morphogenetic proteins (BMPs) play a dual role as a factor in both bone and cartilage development and correspondingly have the therapeutic potential to regenerate both tissues. Given this dual nature, previous in vitro research using BMPs has relied on distinct media formulations and culture conditions to drive undifferentiated cells to the osteogenic or chondrogenic lineage. To isolate the impact of culture conditions and to explore the effect of BMP-6 on murine adipose-derived mesenchymal cells (ASCs), ASCs were seeded in either monolayer or pellets in an identical medium containing BMP-6. Results indicate that BMP-6 differentially promotes osteogenesis and chondrogenesis in ASCs depending on culture conditions. BMP-6 potently induced alkaline phosphatase activity and mineralization in ASCs cultured in monolayer conditions. In contrast, BMP-6 enhanced proteoglycan accumulation in ASCs seeded in chondrogenic pellet culture. A comparison of gene expression suggests that the differentiating effect of BMP-6 is specific to the particular culture condition. This study highlights the importance of the interactions between chemical signaling and microenvironmental cues in directing cell fate.  相似文献   

13.
Bone marrow stromal cells (BMSCs) are a mixture of cells differing in differentiation potential including mesenchymal stem cells, and so far no CD antigens were found to be predictable for the differentiation property of each BMSC. Here we attempted to isolate differentiation-associated CD antigens using 100 immortalized human BMSC (ihBMSC) clones. Among 13 CD antigens analyzed, only CD106/Vascular cell adhesion molecule-1 (VCAM-1) showed a clear correlation with the differentiation potential of each clone; CD106-positive ihBMSC clones were less osteogenic and more adipogenic than CD106-negative clones. This association was confirmed in primary BMSCs sorted by CD106, showing that the CD106-positive fraction contained less osteogenic and more adipogenic cells than the CD106-positive fraction. The evaluation of CD106 fraction of BMSC strains in early passages predicted clearly the osteogenic and adipogenic potential after in vitro induction of differentiation, indicating the usefulness of CD106 as a differentiation-predicting marker of BMSC.  相似文献   

14.
Low magnitude high frequency vibration (LMHFV) exhibits effectively anabolic effects on the bone tissue, and can promote osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro. The role of p38 MAPK signaling in LMHFV-induced osteogenesis remains unclear. In this current study, LMHFV loading was applied to BMSCs in vitro, and cell proliferation, alkaline phosphatase (ALP), matrix mineralization, as well as osteogenic genes expression were assayed. The mechanism of mechanical signal transduction was analysed using PCR array, qRT-PCR and Western blot. LMHFV increased cell proliferation in the growth medium, while inhibited proliferation in the osteogenic medium. ALP activity, matrix mineralization and osteogenic genes expression of Runx2, Col-I, ALP, OPN and OC were increased by LMHFV. p38 and MKK6 genes expression, and p38 phosphorylation were promoted in LMHFV-induced osteogenesis. Inhibition of p38 MAPK with SB203580 and targeted p38 siRNA blunted the increased ALP activity and osteogenic genes expression by LMHFV. These findings suggest that LMHFV promotes osteogenic differentiation of BMSCs, and p38 MAPK signaling shows an important function in LMHFV-induced osteogenesis.  相似文献   

15.
Bone marrow-derived mesenchymal stem cells(BMSCs) play a critical role in the osseointegration of bone and orthopedic implant. However, osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium's inherent defects. Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate. Here, we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys. We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration, and discuss recent advances in understanding their role in regenerative medicine. We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.  相似文献   

16.
The composite of poly-lactic-co-glycolic acid (PLGA) and calcium phosphate cements (CPC) are currently widely used in bone tissue engineering. However, the properties and biocompatibility of the alendronate-loaded PLGA/CPC (APC) porous scaffolds have not been characterized. APC scaffolds were prepared by a solid/oil/water emulsion solvent evaporation method. The morphology, porosity, and mechanical strength of the scaffolds were characterized. Bone marrow mesenchymal stem cells (BMSCs) from rabbit were cultured, expanded and seeded on the scaffolds, and the cell morphology, adhesion, proliferation, cell cycle and osteogenic differentiation of BMSCs were determined. The results showed that the APC scaffolds had a porosity of 67.43 ± 4.2% and pore size of 213 ± 95 µm. The compressive strength for APC was 5.79 ± 1.21 MPa, which was close to human cancellous bone. The scanning electron microscopy, cell counting kit-8 assay, flow cytometry and ALP activity revealed that the APC scaffolds had osteogenic potential on the BMSCs in vitro and exhibited excellent biocompatibility with engineered bone tissue. APC scaffolds exhibited excellent biocompatibility and osteogenesis potential and can potentially be used for bone tissue engineering.  相似文献   

17.
目的:骨髓间充质干细胞(Bone Mesenchymal Stem Cells,BMSCs)是骨再生工程中重要的种子细胞,它对骨组织缺损的修复有着良好的效果。但是BMSCs向成骨细胞分化并修复骨组织缺损是是由细胞外因子共同作用产生的结果。DDR2(Discoidin Domain Receptor 2)作为I型胶原的特异性受体在成骨细胞的分化中发挥重要的调节作用。而对于其在BMSCs向成骨细胞的分化过程中的所起到的作用还鲜有研究,对其作用机理尚不明确。因此我们希望通过分离、培养并鉴定比较DDR2基因缺失小鼠与野生型小鼠来源的骨髓间充质干细胞了解其生物学特性,为后续的实验奠定理论基础。方法:采用改良型的全骨髓贴壁细胞分离方法分离培养两种小鼠来源的骨髓间充质干细胞,采用流式细胞技术鉴定其表面标记物的表达,并利用诱导培养液诱导骨髓间充质干细胞向成骨细胞和成脂肪细胞分化。结果:分离培养的两种骨髓间充质干细胞形态一致,增殖能力和自我更新能力强,流式细胞术检测其表面标记物CD29,Sca-1均表达阳性,CD105,CD45表达为阴性,分离得到的两种细胞均有向成骨细胞和成脂肪细胞分化的能力,但可以明显观察到DDR2基因缺失小鼠的骨髓间充质干细胞的成骨分化能力减弱。结论:本实验通过对于DDR2基因缺失小鼠BMSCs分离、培养和鉴定,初步探索DDR2基因缺失在在成骨过程中的作用结果,为进一步研究提高BMSCs的成骨分化能力奠定理论基础。经实验证明,DDR2基因缺失小鼠来源的骨髓间充质干细胞虽然仍具备干细胞的生物学特性,但其向成骨细胞的分化能力明显减弱,说明DDR2基因缺失对其骨髓间充质干细胞的成骨分化等有着重要的影响。  相似文献   

18.
19.
Bio‐electrospraying is fast becoming an attractive tool for in situ cell delivery into scaffolds for tissue engineering applications, with several cell types been successfully electrosprayed. Bone marrow derived mesenchymal progenitor/stem cells (BMSC), which are an important cell source for tissue engineering, have not been explored in detail and the effect of electrospraying on their “stemness” is not known. This study therefore investigates the effects of electrospraying on BMSC viability, proliferation, and multilineage differentiation potential. Electrospraying a BMSC suspension at flow rate of 6 mL/h and voltages of 7.5–15 kV could successfully generate a continuous, stable and linearly directed electrospray of cells. Morphological observation, trypan blue tests and alamar blue based metabolic assays revealed about 88% of these electrosprayed cells were viable, and proliferated at rates similar to native BMSCs. However, at higher voltages, electrospraying became unstable and reduced cell viability, possibly due to electrical or thermal damage to the cells. BMSCs electrosprayed at 7.5 kV also retained their multipotency and could be successfully differentiated into adipogenic, chondrogenic, and osteogenic lineages, demonstrating similar morphology and gene expression levels as induced native BMSCs. These results indicate that bio‐electrospraying could be safely used as a progenitor/stem cell delivery technique for tissue engineering and regenerative medicine applications. Biotechnol. Bioeng. 2010;106: 690–698. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
骨髓间充质干细胞又称为骨髓源性间充质干细胞,是指存在于骨髓基质细胞系统中的一类干细胞,具有高度稳定的体外扩增能力和多向分化潜能等特点。骨髓间充质干细胞因其取材方便,易于分离和培养,以及在适当条件下可诱导分化为皮肤、骨骼、内脏、血液、神经等多种组织细胞的独特优势,目前被广泛应用于药物开发、免疫调节、组织修复、器官重建等多个研究领域。近年来,骨髓间充质干细胞作为种子细胞在组织工程领域有着非常诱人的潜在应用前景。本文就骨髓间充质干细胞在组织工程学研究中应用的最新进展作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号