首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differentiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs damaged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.  相似文献   

2.
Diseases caused by ischemia are one of the leading causes of death in the world. Current therapies for treating acute myocardial infarction, ischemic stroke, and critical limb ischemia do not complete recovery. Regenerative therapies opens new therapeutic strategy in the treatment of ischemic disorders. Mesenchymal stem cells(MSCs) are the most promising option in the field of cell-based therapies, due to their secretory and immunomodulatory abilities, that contribute to ease inflammation and pr...  相似文献   

3.
Tissue engineering is an emerging field of science that focuses on creating suitable conditions for the regeneration of tissues. The basic components for tissue engineering involve an interactive triad of scaffolds, signaling molecules, and cells. In this context,stem cells(SCs) present the characteristics of selfrenewal and differentiation capacity, which make them promising candidates for tissue engineering. Although they present some common markers, such as cluster of differentiation(CD)105, CD146 and STRO-1, SCs derived from various tissues have different patterns in relation to proliferation, clonogenicity, and differentiation abilities in vitro and in vivo. Tooth-derived tissues have been proposed as an accessible source to obtain SCs with limited morbidity, and various tooth-derived SCs(TDSCs) have been isolated and characterized, such as dental pulp SCs, SCs from human exfoliated deciduous teeth, periodontal ligament SCs, dental follicle progenitor cells, SCs from apical papilla, and periodontal ligament of deciduous teeth SCs. However, heterogeneity among these populations has been observed, and the best method to select the most appropriate TDSCs for regeneration approaches has not yet been established. The objective of this review is to outline the current knowledge concerning the various types of TDSCs, and discuss the perspectives for their use in regenerative approaches.  相似文献   

4.
Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs' subpopulations, heterogeneity andculture standardization.  相似文献   

5.
Injuries to the postnatal skeleton are naturally repaired through successive steps involving specific cell types in a process collectively termed “bone regeneration”. Although complex, bone regeneration occurs through a series of well-orchestrated stages wherein endogenous bone stem cells play a central role. In most situations, bone regeneration is successful; however, there are instances when it fails and creates non-healing injuries or fracture nonunion requiring surgical or therapeutic interventions. Transplantation of adult or mesenchymal stem cells (MSCs) defined by the International Society for Cell and Gene Therapy (ISCT) as CD105+CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is being investigated as an attractive therapy for bone regeneration throughout the world. MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), are gaining increasing attention since this is the most abundant source of adult stem cells and the isolation process for ADSCs is straightforward. Currently, there is not a single Food and Drug Administration (FDA) approved ADSCs product for bone regeneration. Although the safety of ADSCs is established from their usage in numerous clinical trials, the bone-forming potential of ADSCs and MSCs, in general, is highly controversial. Growing evidence suggests that the ISCT defined phenotype may not represent bona fide osteoprogenitors. Transplantation of both ADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146, AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown to represent osteogenic sub-population within ADSCs. Amongst other strategies to improve the bone-forming ability of ADSCs, modulation of VEGF, TGF-β1 and BMP signaling pathways of ADSCs has shown promising results. The U.S. FDA reveals that 73% of Investigational New Drug applications for stem cell-based products rely on CD105 expression as the “positive” marker for adult stem cells. A concerted effort involving the scientific community, clinicians, industries, and regulatory bodies to redefine ADSCs using powerful selection markers and strategies to modulate signaling pathways of ADSCs will speed up the therapeutic use of ADSCs for bone regeneration.  相似文献   

6.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

7.
Mesenchymal stem cells (MSCs) are considered as an attractive tool for tissue regeneration and possess a strong immunomodulatory ability. Dental tissue-derived MSCs can be isolated from different sources, such as the dental pulp, periodontal ligament, deciduous teeth, apical papilla, dental follicles and gingiva. According to numerous in vitro studies, the effect of dental MSCs on immune cells might depend on several factors, such as the experimental setting, MSC tissue source and type of immune cell preparation. Most studies have shown that the immunomodulatory activity of dental MSCs is strongly upregulated by activated immune cells. MSCs exert mostly immunosuppressive effects, leading to the dampening of immune cell activation. Thus, the reciprocal interaction between dental MSCs and immune cells represents an elegant mechanism that potentially contributes to tissue homeostasis and inflammatory disease progression. Although the immunomodulatory potential of dental MSCs has been extensively investigated in vitro, its role in vivo remains obscure. A few studies have reported that the MSCs isolated from inflamed dental tissues have a compromised immunomodulatory ability. Moreover, the expression of some immunomodulatory proteins is enhanced in periodontal disease and even shows some correlation with disease severity. MSC-based immunomodulation may play an essential role in the regeneration of different dental tissues. Therefore, immunomodulation-based strategies may be a very promising tool in regenerative dentistry.  相似文献   

8.
Adipose-derived stem cells(ADSCs)residing in the stromal vascular fraction(SVF)of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis(SSc),a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions.Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients.However,currently available data indicate that ADSCs may represent a double-edged sword in SSc,as they may exhibit a pro-fibrotic and anti-adipogenic phenotype,possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process.Thus,in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications,it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive,anti-inflammatory,anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs.In light of the dual role that ADSCs seem to play in SSc,this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and,at the same time,will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.  相似文献   

9.
In the present study, the potential of human adipose-derived stem cells to differentiate into cells with characteristics of cardiomyocytes was investigated. Adipose tissue-derived stem cells (ADSCs) were transduced with two different lentiviral vectors simultaneously: (1) a lentiviral vector expressing eGFP controlled by the Nkx2.5 promoter and (2) a lentiviral vector expressing DsRed2 controlled by the myosin light chain-2v promoter (MLC-2v). Nkx2.5-eGFP and MLC-2v-DsRed2 dual positive cells were isolated by FACS. Immunostaining and RT-PCR analysis of the dual positive cells revealed that these cells are positive for Nkx2.5, cardiac troponin I, and L-type calcium channel alpha-1c subunit. Electrophysiology studies demonstrated the presence of functional voltage-dependent calcium and potassium channels. These observations confirm that cardiac progenitor cells can be isolated and enriched from human adipose-derived stem cells using lentiviral selection, and they might represent a new source for cell therapy for myocardial infarction and heart failure.  相似文献   

10.
The main purpose of the article is to review recent knowledge about growth factors and their effect on the chondrogenic differentiation of mesenchymal stem cells under in vitro conditions. Damaged or lost articular cartilage leads to progressive debilitation, which have major impact on the life quality of the affected individuals of both sexes in all age groups. Mature hyaline cartilage has a very low self-repair potential due to intrinsic properties - lack of innervation and vascular supply. Another limiting factor is low mitotic potential of chondrocytes. Small defects are healed by migration of chondrocytes, while large ones are healed by formation of inferior fibrocartilage. However, in many cases osteoarthritis develops. Recently, cellular therapy combining mesenchymal stem cells and proper differentiation factors seems to be promising tool for hyaline cartilage defects healing.  相似文献   

11.
Mesenchymal stromal cells (MSCs) have attracted intense interest in the field of dental tissue regeneration. Dental tissue is a popular source of MSCs because MSCs can be obtained with minimally invasive procedures. MSCs possess distinct inherent properties of self-renewal, immunomodulation, proangiogenic potential, and multilineage potency, as well as being readily available and easy to culture. However, major issues, including poor engraftment and low survival rates in vivo, remain to be resolved before large-scale application is feasible in clinical treatments. Thus, some recent investigations have sought ways to optimize MSC functions in vitro and in vivo. Currently, priming culture conditions, pretreatment with mechanical and physical stimuli, preconditioning with cytokines and growth factors, and genetic modification of MSCs are considered to be the main strategies; all of which could contribute to improving MSC efficacy in dental regenerative medicine. Research in this field has made tremendous progress and continues to gather interest and stimulate innovation. In this review, we summarize the priming approaches for enhancing the intrinsic biological properties of MSCs such as migration, antiapoptotic effect, proangiogenic potential, and regenerative properties. Challenges in current approaches associated with MSC modification and possible future solutions are also indicated. We aim to outline the present understanding of priming approaches to improve the therapeutic effects of MSCs on dental tissue regeneration.  相似文献   

12.
Fibrosis is the hyperactivation of fibroblasts that results in excessive accumulation of extracellular matrix, which is involved in numerous pathological changes and diseases. Adipose-derived stem cells (ASCs) are promising seed cells for regenerative medicine due to their bountiful source, low immunogenicity and lack of ethical issues. Their anti-fibrosis, immunomodulation, angiogenesis and other therapeutic effects have made them suitable for treating fibrosis-related diseases. Here, we review the literature on ASCs treating fibrosis, elaborate and discuss their mechanisms of action, changes in disease environment, ways to enhance therapeutic effects, as well as current preclinical and clinical studies, in order to provide a general picture of ASCs treating fibrotic diseases.  相似文献   

13.
Bone is a highly vascularized tissue reliant on the close spatial and temporal association between bloodvessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells(mesenchymal stem cells, endothelial progenitor cells and CD34+ blood progenitors) for bone regeneration.  相似文献   

14.
15.

Background

Wound healing is a complex biologic process that involves the integration of inflammation, mitosis, angiogenesis, synthesis, and remodeling of the extracellular matrix. However, some wounds fail to heal properly and become chronic. Although some simulated chronic wound models have been established, an efficient approach to treat chronic wounds in animal models has not been determined. The aim of this study was to develop a modified rat model simulating the chronic wounds caused by clinical radiation ulcers and examine the treatment of chronic wounds with adipose-derived stem cells.

Results

Sprague–Dawley rats were irradiated with an electron beam, and wounds were created. The rats received treatment with adipose-derived stem cells (ASCs), and a wound-healing assay was performed. The wound sizes after ASC treatment for 3 weeks were significantly smaller compared with the control condition (p < 0.01). Histological observations of the wound edge and immunoblot analysis of the re-epithelialization region both indicated that the treatment with ASCs was associated with the development of new blood vessels. Cell-tracking experiments showed that ASCs were colocalized with endothelial cell markers in ulcerated tissues.

Conclusions

We established a modified rat model of radiation-induced wounds and demonstrated that ASCs accelerate wound-healing.  相似文献   

16.
Human mesenchymal stem cells isolated from the umbilical cord   总被引:16,自引:0,他引:16  
Mesenchymal stem cells (MSCs) are known as a population of multi-potential cells able to proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat and stroma. In this study human MSCs were successfully isolated from the umbilical cords. The research characteristics of these cells, e.g., morphologic appearance, surface antigens, growth curve, cytogenetic features, cell cycle, differentiation potential and gene expression were investigated. After 2weeks of incubation, fibroblast-like cells appeared to be dominant. During the second passage the cells presented a homogeneous population of spindle fibroblast-like cells. After more than 4months (approximately 26 passages), the cells continued to retain their characteristics. Flow cytometry analysis revealed that CD29, CD44, CD95, CD105 and HLA-I were expressed on the cell surface, but there was no expression of hematopoietic lineage markers, such as CD34, CD38, CD71 and HLA-DR. Chromosomal analysis showed the cells kept a normal karyotype. The cell cycle at the third passage showed the percentage of G(0)/G(1), G(2)/M and S phase were 88.86%, 5.69% and 5.45%, respectively. The assays in vitro demonstrated the cells exhibited multi-potential differentiation into osteogenic and adipogenic cells. Both BMI-1 and nucleostemin genes, expressed in adult MSCs from bone marrow, were also expressed in umbilical cord MSCs. Here we show that umbilical cords may be a novel alternative source of human MSCs for experimental and clinical applications.  相似文献   

17.
脂肪干细胞(adipose-derived stem cells,ADSCs)是一类从脂肪分离出来的具有自我更新及多向分化潜能的成体干细胞,ADSCs具有高度的可塑性,可分化成多种类型的细胞。与其他干细胞相比,ADSCs具有来源充足,取材方便,供体易接受等独特优势,已成为基础医学及临床治疗的研究热点。ADSCs诱导分化和移植可有效治疗多种组织损伤性疾病,改善或修复器官功能,近年来ADSCs作为细胞疗法及组织工程的新型种子细胞在泌尿系统疾病治疗中取得了重大进展。本文重点讨论ADSCs的生物学特性及其在泌尿系统疾病中的应用前景。  相似文献   

18.
Osteocytes are the most abundant cells in bone and there is increasing evidence that they control bone remodeling via direct cell-to-cell contacts and by soluble factors. In the present study, we have used the MLO-Y4 cell line to study the effect of osteocytes on the proliferation, differentiation and bone-forming capacity of bone marrow mesenchymal stem cells (MSC). Conditioned media (CM) from osteocytic MLO-Y4 and osteoblastic MC3T3-E1 cell lines were collected and added on mouse bone marrow cultures, in which MSC were induced to osteoblasts. There was a significant increase in alkaline phosphatase activity and osteocalcin expression in the presence of MLO-Y4 CM. No such stimulus could be observed with MC3T3-E1 CM. There was almost 4-fold increase in bone formation and up to 2-fold increase in the proliferation of MSC with MLO-Y4 CM. The highly proliferating bone marrow cells were negative for ALP and OCN, suggesting that they could represent early osteoblast precursors. MLO-Y4 CM did not enhance the viability of mature osteoblasts nor protected them of apoptosis. This is the first study to describe soluble signals between osteocytes and osteoblasts and there most likely are several still unidentified or unknown factors in osteocyte CM. We conclude that osteocytes have an active stimulatory role in controlling bone formation.  相似文献   

19.
Wound healing is a complex but a fine-tuned biological process in which human skin has the ability to regenerate itself following damage. However, in particular conditions such as deep burn or diabetes the process of wound healing is compromised. Despite investigations on the potency of a wide variety of stem cells for wound healing, adipose-derived stem cells (ASCs) seem to possess the least limitations for clinical applications, and literature showed that ASCs can improve the process of wound healing very likely by promoting angiogenesis and/or vascularisation, modulating immune response, and inducing epithelialization in the wound. In the present review, advantages and disadvantages of various stem cells which can be used for promoting wound healing are discussed. In addition, potential mechanisms of action by which ASCs may accelerate wound healing are summarised. Finally, clinical studies applying ASCs for wound healing and the associated limitations are reviewed.  相似文献   

20.
Mesenchymal stem cell(MSC)therapy has attracted the attention of scientists and clinicians around the world.Basic and pre-clinical experimental studies have highlighted the positive effects of MSC treatment after spinal cord and peripheral nerve injury.These effects are believed to be due to their ability to differentiate into other cell lineages,modulate inflammatory and immunomodulatory responses,reduce cell apoptosis,secrete several neurotrophic factors and respond to tissue injury,among others.There are many pre-clinical studies on MSC treatment for spinal cord injury(SCI)and peripheral nerve injuries.However,the same is not true for clinical trials,particularly those concerned with nerve trauma,indicating the necessity of more well-constructed studies showing the benefits that cell therapy can provide for individuals suffering the consequences of nerve lesions.As for clinical trials for SCI treatment the results obtained so far are not as beneficial as those described in experimental studies.For these reasons basic and pre-clinical studies dealing with MSC therapy should emphasize the standardization of protocols that could be translated to the clinical set with consistent and positive outcomes.This review is based on pre-clinical studies and clinical trials available in the literature from 2010 until now.At the time of writing this article there were 43 and 36 pre-clinical and 19 and 1 clinical trials on injured spinal cord and peripheral nerves,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号