首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pluripotent stem cells derived from somatic cells through such processes as nuclear transfer or induced pluripotent stem (iPS) cells present an important model for biomedical research and provide potential resources for cell replacement therapies. However, the overall efficiency of the conversional nuclear transfer is very low and the safety issue remains a major concern for iPS cells. Embryonic stem cells (ESCs) generated from parthenogenetic embryos are one attractive alternative as a source of histocompatible cells and tissues for cell therapy. Recent studies on human parthenogenetic embryonic stem cells (hPG ESCs) have revealed that these ESCs are very similar to the hESCs derived from IVF or in vivo produced blastocysts in gene expression and other characteristics, but full differentiation and development potential of these hPG ESCs have to be further investigated before clinical research and therapeutic interventions. To generate various pluripotent stem cells, diverse reprogramming techniques and approaches will be developed and integrated. This may help elucidate the fundamental mechanisms underlying reprogramming and stem cell biology, and ultimately benefit cell therapy and regenerative medicine. Supported by the National High Technology Research and Development Program of China (Grant No. 2006AA02A101).  相似文献   

2.
体细胞通过重编程转变成其他类型的细胞,在再生医学方面具有重要的应用前景。细胞重编程的方法主要有体细胞核移植、细胞融合、细胞提取物诱导、限定因子诱导等,这些方法可以不同程度地改变细胞命运。最近,限定因子诱导的多能干细胞(induced pluripotent stem cell。iPS)为重编程提供了一种崭新的方法,不仅可以避免伦理争议,还提供了一种更为便利的技术,为再生医学开辟了新的天地;同时,iPS技术为研究基因表达调控、蛋白质互作、机体生长发育等提供了一个非常重要的研究手段。本文主要论述了体细胞重编程的方法及iPS细胞的进展、面临的问题和应用前景。  相似文献   

3.
The derivation of embryonic stem cells (hESC) from human embryos a decade ago started a new era in perspectives for cell therapy as well as understanding human development and disease. More recently, reprogramming of somatic cells to an embryonic stem cell‐like state (induced pluripotent stem cells, iPS) presented a new milestone in this area, making it possible to derive all cells types from any patients bearing specific genetic mutations. With the development of efficient differentiation protocols we are now able to use the derivatives of pluripotent stem cells to study mechanisms of disease and as human models for drug and toxicology testing. In addition derivatives of pluripotent stem cells are now close to be used in clinical practice although for the heart, specific additional challenges have been identified that preclude short‐term application in cell therapy. Here we review techniques presently used to induce differentiation of pluripotent stem cells into cardiomyocytes and the potential these cells have as disease models and for therapy. J. Cell. Biochem. 107: 592–599, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.  相似文献   

5.
Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.  相似文献   

6.
胚胎干细胞在再生医学领域有着十分诱人的应用前景。但是现有胚胎干细胞建系技术不能避开对卵细胞的操作, 成为ES细胞临床应用的障碍。通过反转录病毒载体系统, 在小鼠和人类高度分化细胞中表达干细胞因子Oct4, Sox2, Klf4和/或c-Myc等基因, 再经过干细胞标志因子Nanog或Oct4筛选, 可以获得与ES细胞特性十分近似的诱导多能干细胞系。这种不依赖于卵细胞的多能干细胞建系方法无疑是干细胞实验技术的重大进展, 也是对现有重编程理论假设的突破。综述了诱导多能干细胞系建系实验结果, 并对诱导重编程的机制和诱导多能干细胞系的临床应用前景进行了讨论。  相似文献   

7.
徐正燕  李鹰 《生物工程学报》2017,33(7):1069-1074
心肌细胞的再生疗法作为心脏疾病的新型疗法受到人们的广泛关注。细胞直接重编程技术为诱导获得心肌细胞提供了新的方法,它可以绕过多潜能的阶段,将一种终末分化的细胞直接重编程为心肌细胞,为将来细胞移植提供更为安全的细胞来源。文中对体内外直接重编程成纤维细胞为心肌细胞的研究方法及其存在的问题进行了总结,并对心肌细胞直接重编程的未来发展进行展望。  相似文献   

8.
As a milestone breakthrough of stem cell and regenerative medicine in recent years,somatic cell reprogramming has opened up new applications of regenerative medicine by breaking through the ethical shackles of embryonic stem cells.However,induced pluripotent stem(iPS) cells are prepared with a complicated protocol that results in a low reprogramming rate.To obtain differentiated target cells,iPS cells and embryonic stem cells still need to be induced using step-by-step procedures.The safety of induced target cells from iPS cells is currently a further concerning matter.More broadly conceived is lineage reprogramming that has been investigated since 1987.Adult stem cell plasticity,which triggered interest in stem cell research at the end of the last century,can also be included in the scope of lineage reprogramming.With the promotion of iPS cell research,lineage reprogramming is now considered as one of the most promising fields in regenerative medicine,will hopefully lead to customized,personalized therapeutic options for patients in the future.  相似文献   

9.
Reprogramming of somatic cells to a pluripotent state holds huge potentials for regenerative medicine. However, a debate over which method is better, somatic cell nuclear transfer (SCNT) or induced pluripotent stem (iPS) cells, still persists. Both approaches have the potential to generate patient-specific pluripotent stem cells for replacement therapy. Yet, although SCNT has been successfully applied in various vertebrates, no human pluripotent stem cells have been generated by SCNT due to technical, legal and ethical difficulties. On the other hand, human iPS cell lines have been reported from both healthy and diseased individuals. A recent study reported the generation of triploid human pluripotent stem cells by transferring somatic nuclei into oocytes, a variant form of SCNT. In this essay, we discuss this progress and the potentials of these two reprogramming approaches for regenerative medicine.  相似文献   

10.
诱导多能干细胞(i PS细胞)在小鼠和人上的成功获取,使干细胞领域的研究进入了一个崭新的时代。干细胞研究是再生医学的重要组成部分,研究干细胞的最终目的是应用干细胞治疗疾病,其在疾病模型建立、药物筛选、细胞移植等方面具有极大的应用潜力。i PSCs是由体细胞诱导分化而成的"多能细胞",具备和胚胎干细胞类似的功能,既解决了ESCs的伦理障碍,又为ESCs的获得提供了一条全新的途径,具有重要的理论和应用价值。i PS细胞不仅打破了道德理论的束缚,而且在再生医学、组织工程和药物发现及评价等方面具有积极的价值。神经系统遗传性疾病发病率居各系统遗传病之首,但其发病的分子机制仍不完全清楚,运用体细胞重编程技术建立的疾病特异性诱导多能干细胞模型将有助于揭示神经系统遗传性疾病的发病机理。近几年i PS细胞最新研究成果表明,利用疾病患者i PS细胞模型已逐渐应用于帕金森氏病、老年性痴呆症、脊髓侧索硬化症、脊髓肌肉萎缩症及舞蹈症等5种常见神经性退行性疾病发病机理的研究。本文主要对i PSc的发展历程,避免病毒基因干扰诱导i PS细胞进行的优化,以及干细胞尤其是i PS细胞移植治疗帕金森病等神经系统疾病的现状及应用前景进行系统阐述与论证。  相似文献   

11.
肾是一种重要的人体器官,具有多种生理功能。然而,全球范围内约有10%的人口患有肾疾病。因此,建立一种接近人体肾的结构与功能的模型进行肾疾病的研究是十分必要的。多能干细胞体外定向诱导分化技术的兴起,为再生医学和精准医学领域注入了新的动力。本研究通过在体外条件下模拟体内肾发育的过程,将人多能干细胞包括胚胎干细胞和诱导多能干细胞,通过体外定向诱导分化形成肾的祖细胞,进而建立肾的结构与功能单位:肾元。该研究通过激活WNT信号通路,同时抑制TGF-β信号通路,将人多能干细胞从多能态定向诱导至原条阶段。之后通过细胞自分化的能力使其发育至中间中胚层,再通过激活FGF信号通路,将其分化至肾祖细胞阶段。流式细胞检测结果显示,肾祖细胞占总细胞数的51.5%~61.9%。通过免疫荧光检测发现:分化得到的结构中包含肾小球足细胞、近端小管、远端小管等肾组织结构。该研究建立的肾体外分化方法,具有稳定性好、分化效率高、重复性好的特点。为研究人类肾的早期发育机制,肾疾病模型构建,以及药物筛选提供了一种新的方法。  相似文献   

12.
蒋婧  李劲松 《生命科学》2009,(5):608-613
体细胞重编程是指分化的体细胞在特定的条件下被逆转后恢复到多能性或全能性状态,或者形成多能干细胞系,或者形成早期胚胎然后发育成一个新的个体的过程。诱导体细胞重编程的方法有许多,如核移植(nuclear transfer,NT)、细胞融合、细胞培养和通过导入特定因子获得诱导多能干(induced pluripotent stem,iPS)细胞的方法等。其中核移植和iPS技术是到目前为止诱导体细胞为多能干细胞最为完全、最具有运用于临床再生医学潜能的方法。然而,它们的效率都很低,机制也不清楚,如何将两个方法结合在一起,提高重编程的效率,揭示重编程的机制,进而促进其在患者特异性治疗中的运用将是下阶段的努力方向。  相似文献   

13.
用干细胞转录因子OCT4、SOX2、c-MYC和KLF4进行体细胞重编程产生具有胚胎干细胞特性的诱导多能干细胞(iPS细胞)是干细胞研究领域的突破性进展。近年来,iPS细胞的研究从产生方法、重编程机理及实际应用方面不断取得进展。由于iPS细胞的产生可取自体细胞,因而克服了胚胎干细胞应用的伦理学和免疫排斥等缺陷,为iPS细胞的临床应用开辟了广阔的前景。该文将对iPS细胞的产生方法、重编程机理及其在神经性退行性疾病的研究与应用进行文献综述,反映近几年iPS细胞最新研究成果,并阐述了用病人iPS细胞模型探讨帕金森氏病、老年性痴呆症、脊髓侧索硬化症、脊髓肌肉萎缩症及舞蹈症等5种常见神经性退行性疾病发病机理的研究现状。  相似文献   

14.
15.
Human embryonic stem cells (hESCs) are pluripotent cells that have the ability of unlimited self-renewal and can be differentiated into different cell lineages, including neural stem (NS) cells. Diverse regulatory signaling pathways of neural stem cells differentiation have been discovered, and this will be of great benefit to uncover the mechanisms of neuronal differentiation in vivo and in vitro. However, the limitations of hESCs resource along with the religious and ethical concerns impede the progress of ESCs application. Therefore, the induced pluripotent stem cells (iPSCs) via somatic cell reprogramming have opened up another new territory for regenerative medicine. iPSCs now can be derived from a number of lineages of cells, and are able to differentiate into certain cell types, including neurons. Patient-specific iPSCs are being used in human neurodegenerative disease modeling and drug screening. Furthermore, with the development of somatic direct reprogramming or lineage reprogramming technique, a more effective approach for regenerative medicine could become a complement for iPSCs.  相似文献   

16.
Regenerative medicine offers the hope that cells for disease research and therapy might be created from readily available sources. To fulfil this promise, the cells available need to be converted into the desired cell types. We review two main approaches to accomplishing this goal: in vitro directed differentiation, which is used to push pluripotent stem cells, including embryonic stem cells or induced pluripotent stem cells, through steps similar to those that occur during embryonic development; and reprogramming (also known as transdifferentiation), in which a differentiated cell is converted directly into the cell of interest without proceeding through a pluripotent intermediate. We analyse the status of progress made using these strategies and highlight challenges that must be overcome to achieve the goal of cell-replacement therapy.  相似文献   

17.
Acquisition of the pluripotent state coincides with epigenetic reprogramming of the X-chromosome. Female embryonic stem cells are characterized by the presence of two active X-chromosomes, cell differentiation by inactivation of one of the two Xs, and induced pluripotent stem cells by reactivation of the inactivated X-chromosome in the originating somatic cell. The tight linkage between X- and stem cell reprogramming occurs through pluripotency factors acting on noncoding genes of the X-inactivation center. This review article will discuss the latest advances in our understanding at the molecular level. Mouse embryonic stem cells provide a standard for defining the pluripotent ground state, which is characterized by low levels of the noncoding Xist RNA and the absence of heterochromatin marks on the X-chromosome. Human pluripotent stem cells, however, exhibit X-chromosome epigenetic instability that may have implications for their use in regenerative medicine. XIST RNA and heterochromatin marks on the X-chromosome indicate whether human pluripotent stem cells are developmentally ‘naïve’, with characteristics of the pluripotent ground state. X-chromosome status and determination thereof via noncoding RNA expression thus provide valuable benchmarks of the epigenetic quality of pluripotent stem cells, an important consideration given their enormous potential for stem cell therapy.  相似文献   

18.
The advent of induced pluripotent stem cells (iPSCs) has revolutionized the concept of cellular reprogramming and potentially will solve the immunological compatibility issues that have so far hindered the application of human pluripotent stem cells in regenerative medicine. Recent findings showed that pluripotency is defined by a state of balanced lineage potency, which can be artificially instated through various procedures, including the conventional Yamanaka strategy. As a type of pluripotent stem cell, iPSCs are subject to the usual concerns over purity of differen- tiated derivatives and risks of tumor formation when used for cell-based therapy, though they pro- vide certain advantages in translational research, especially in the areas of personalized medicine, disease modeling and drug screening, iPSC-based technology, human embryonic stem cells (hESCs) and direct lineage conversion each will play distinct roles in specific aspects of translational medi- cine, and continue yielding surprises for scientists and the public.  相似文献   

19.
宋红卫  安铁洙  朴善花  王春生 《遗传》2014,36(5):431-438
诱导多能干细胞(Induced pluripotent stem cell, iPS)技术提供了将终末分化的细胞逆转为多潜能干细胞的可能, 在干细胞基础理论研究和再生医学中具有重要意义。然而, 目前体细胞诱导重编程方法效率极低, 常发生不完全的重编程。研究表明, 在不完全重编程的细胞中存在体细胞的表观遗传记忆, 而DNA甲基化作为相对长期和稳定的表观遗传修饰, 是影响重编程效率和iPS细胞分化能力的重要因素之一。哺乳动物DNA甲基化是指胞嘧啶第五位碳原子上的甲基化修饰, 常发生于CpG位点。DNA甲基化能够调节体细胞特异基因和多能性基因的表达, 因此其在哺乳动物基因调控、胚胎发育和细胞重编程过程中发挥着重要作用。此外, 异常DNA甲基化可能导致iPS细胞基因印记的异常和X染色体的失活。文章重点围绕DNA甲基化的机制、分布特点、及其在体细胞诱导重编程中的作用进行了综述。  相似文献   

20.
Induced pluripotent stem (iPS) cell research has been growing a new height throughout the world due to its potentialities in medical applications. We can explore several therapeutic applications through the iPS cell research. In this review, we have first discussed the development of iPS cells, reprogramming factors, and effectiveness of iPS cells. Then we have emphasized the potential applications of iPS cells in pharmaceutical and medical sectors, such as, study of cellular mechanisms for spectrum of disease entities, disease-specific iPS cell lines for drugs discovery and development, toxicological studies of drugs development, personalized medicine, and regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号