首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine.  相似文献   

2.
Inducing the differentiation of stem cells from human exfoliated deciduous teeth (SHEDs) proceeds with low efficiency, which greatly limits clinical applications. Divalent metal elements play an important role in osteoinductivity for bone remodeling because they can simulate bone formation and decrease bone resorption. The purpose of this study was to investigate the effect of some divalent metal phosphates on osteogenic differentiation from human exfoliated deciduous teeth. These divalent metal ions can be gradually released from the scaffold into the culture medium and continually induce osteoblastic differentiation. Experimental results revealed that SHEDs cultured in chitosan scaffolds containing divalent metal phosphates had notably increased osteoblastic differentiation compared with cells cultured without divalent metal phosphates. This effect was due to the high activity of alkaline phosphatase, as well as the bone-related gene expression of collagen type I, Runx2, osteopontin, osteocalcin, VEGF, and Ang-1, shown through RT-PCR and bone-related protein immunocytochemistry stains. A calcium-content assay further revealed significant enhancement of deposited minerals on the scaffolds after 21 days of culture, particularly for magnesium phosphate and zinc phosphate. Thus, divalent metals, except for barium phosphate, effectively promoted SHED cell differentiation and osteoblastic cell maturation. This study demonstrated that the divalent metal elements magnesium, strontium, and zinc could effectively induce SHED osteoblastic differentiation for use in tissue engineering and bone repair.  相似文献   

3.
Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative, clonogenic and multipotent stem cells with a neural crest cell origin. Additionally, they can be collected with minimal invasiveness in comparison with other sources of mesenchymal stem cells (MSCs). Therefore, SHED could be a desirable option for potential therapeutic applications. In this study, SHEDs were established from enzyme-disaggregated deciduous dental pulp obtained from 6 to 9 year-old children. The cells had typical fibroblastoid morphology and expressed antigens characteristic of MSCs, STRO1, CD146, CD45, CD90, CD106 and CD166, but not the hematopoietic and endothelial markers, CD34 and CD31, as assessed by FACS analysis. Differentiation assessment revealed a strong osteogenic and adipogenic potential of SHEDs. In order to further evaluate the in vitro differentiation potential of SHED into neural cells, a simple short time growth factor-mediated induction was used. Immunofluorescence staining and flow cytometric analysis revealed that SHED rapidly expressed nestin and b-III tubulin, and later expressed intermediate neural markers. In addition, the intensity and percentages of nestin and b-III tubulin and mature neural markers (PSA-NCAM, NeuN, Tau, TH, or GFAP) increased significantly following treatment. Moreover, RT-PCR and Western blot analyses showed that the neural markers were strongly up-regulated after induction. In conclusion, these results provide evidence that SHED can differentiate into neural cells by the expression of a comprehensive set of genes and proteins that define neural-like cells in vitro. SHED cells might be considered as new candidates for the autologous transplantation of a wide variety of neurological diseases and neurotraumatic injuries.  相似文献   

4.
Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X-chromosome) cause X-linked familial hypophosphatemic rickets (XLH), a disorder having severe bone and tooth dentin mineralization defects. The absence of functional PHEX leads to abnormal accumulation of ASARM (acidic serine- and aspartate-rich motif) peptide − a substrate for PHEX and a strong inhibitor of mineralization − derived from MEPE (matrix extracellular phosphoglycoprotein) and other matrix proteins. MEPE-derived ASARM peptide accumulates in tooth dentin of XLH patients where it may impair dentinogenesis. Here, we investigated the effects of ASARM peptides in vitro and in vivo on odontoblast differentiation and matrix mineralization. Dental pulp stem cells from human exfoliated deciduous teeth (SHEDs) were seeded into a 3D collagen scaffold, and induced towards odontogenic differentiation. Cultures were treated with synthetic ASARM peptides (phosphorylated and nonphosphorylated) derived from the human MEPE sequence. Phosphorylated ASARM peptide inhibited SHED differentiation in vitro, with no mineralized nodule formation, decreased odontoblast marker expression, and upregulated MEPE expression. Phosphorylated ASARM peptide implanted in a rat molar pulp injury model impaired reparative dentin formation and mineralization, with increased MEPE immunohistochemical staining. In conclusion, using complementary models to study tooth dentin defects observed in XLH, we demonstrate that the MEPE-derived ASARM peptide inhibits both odontogenic differentiation and matrix mineralization, while increasing MEPE expression. These results contribute to a partial mechanistic explanation of XLH pathogenesis: direct inhibition of mineralization by ASARM peptide leads to the mineralization defects in XLH teeth. This process appears to be positively reinforced by the increased MEPE expression induced by ASARM. The MEPE-ASARM system can therefore be considered as a potential therapeutic target.  相似文献   

5.
Background aimsThe success of islet transplantation for diabetes depends on the availability of an adequate number of allogeneic or autologous islets. Postnatal stem cells are now considered for the generation of physiologically competent, insulin-producing cells. Our group showed earlier that it is possible to generate functional islets from human dental pulp stem cells by using a serum-free cocktail in a three-step protocol.MethodsWe compared the yield of generated islet-like cell clusters (ICCs) from stem cells from pulps of human exfoliated deciduous teeth (SHED) and dental pulp stem cells from permanent teeth (DPSCs). ICCs derived from SHED were packed in immuno-isolatory biocompatible macro-capsules and transplanted into streptozotocin (STZ)-induced diabetic mice. Non-diabetic and diabetic controls were transplanted with macro-capsules with or without islets.ResultsSHED were superior to DPSCs. STZ diabetic mice alone and mice transplanted with empty macro-capsules exhibited hyperglycemia throughout the experiment, whereas mice transplanted with macro-capsules containing ICCs were restored to normoglycemia within 3–4 weeks, which persisted for >60 days.ConclusionsOur results demonstrate for the first time that ICCs derived from SHED reverse STZ diabetes in mice without immunosuppression and offer an autologous and non-controversial source of human tissue that could be used for stem cell therapy in diabetes.  相似文献   

6.
Two kinds of dental stem cells (DSCs), dental pulp stem cells (DPSCs) and stem cells from human-exfoliated deciduous teeth (SHED), have been identified as novel populations of mesenchymal stem cells that can be induced to differentiate into osteoblasts, chondrocytes, adipocytes, and neuron-like cells in vitro. As we know, both of them originate from the neural crest, but have distinct characteristics and functions in vitro and in vivo. The regeneration potential of DSCs declines with advanced age; however, the mechanism of the impaired potential in DSCs has not been fully explored. In this study, we investigated whether declined neurogenic differentiation capacity is associated with an altered expression of Wnt signaling-related proteins in vitro. We compared stem cells isolated from human dental pulp in two age groups: the exfoliated deciduous teeth (5–12 years), and the third permanent teeth (45–50 years). We found that the expression levels of neuron markers, such as βIII-tubulin, microtubule-associated protein 2(MAP2), tyrosine hydroxylase (TH), and Nestin were lower in the DPSCs group compared with that in the SHED group; however, in supplementation with human recombinant Wnt1 in the medium, the DPSCs were prone to neural differentiation and expressed higher levels of neurogenic markers. In summary, our study demonstrated that Wnt/β-catenin signaling may play a vital role in the age-dependent neural differentiation of DSCs. Therefore, DSCs may provide an ideal source of stem cells that can further extend their therapeutic application in nerve injury and neurodegenerative diseases.  相似文献   

7.
《Tissue & cell》2016,48(5):425-431
Lithium Chloride (LiCl) has been used as a canonical Wnt pathway activator due to its ability to inhibit a glycogen synthase kinase-3. The aim of the present study was to investigate the effect of LiCl on cell proliferation and osteogenic differentiation in stem cells isolated from human exfoliated deciduous teeth (SHEDs). SHEDs were isolated and cultured in media supplemented with LiCl at 5, 10, or 20 mM. The results demonstrated that LiCl significantly decreased SHEDs colony forming unit ability in a dose dependent manner. LiCl significantly enhanced the percentage of cells in the sub G0 phase, accompanied by a reduction of the percentage of cells in the G1 phase at day 3 and 7 after treatment. Further, LiCl markedly decreased OSX and DMP1 mRNA expression after treating SHEDs in an osteogenic induction medium for 7 days. In addition, no significant difference in alkaline phosphatase enzymatic activity or mineral deposition was found. Together, these results imply that LiCl influences SHEDs behavior.  相似文献   

8.
Background aimsIn recent years, stem cells from human exfoliated deciduous teeth (SHED) have received attention as a novel stem cell source with multipotent potential. We examined the effect on wound-healing promotion with unique stem cells from deciduous teeth as a medical waste.MethodsAn excisional wound-splinting mouse model was used and the effect of wound healing among SHED, human mesenchymal stromal cells (hMSCs), human fibroblasts (hFibro) and a control (phosphate-buffered saline; PBS) was evaluated by macroscopy, histology and enzyme-linked immunosorbent assay (ELISA), and the expression of hyaluronan (HA), which is related to wound healing, investigated.ResultsSHED and hMSCs accelerated wound healing compared with hFibro and the control. There was a statistically significant difference in wound healing area among hFibro, hMSCs and SHED compared with the control after day 5. At days 7 and 14 after cell transplantation, the histologic observation showed that transplanted PKH26-positive cells were surrounded by human HA binding protein, especially in hMSCs and SHED. HA expression volume values were 1558.41 ± 60.33 (control), 2092.75 ± 42.56 (hFibro), 2342.07 ± 188.10 (hMSCs) and 2314.85 ± 164.91 (SHED) ng/mg, respectively, and significantly higher in hMSCs and SHED compared with hFibro and control at days 7 and 14 (P < 0.05).ConclusionsOur results show that SHED hMSCs have similar effects of wound-healing promotion as hFibro and controls. This implies that SHED might offer a unique stem cell resource and the possibility of novel cell therapies for wound healing in the future.  相似文献   

9.
Multipotent stem cells derived from periodontal ligaments (PDLSC) and pulp of human exfoliated deciduous teeth (SHED) represent promising cell sources for bone regeneration. Recent studies have demonstrated that retinoic acid (RA) and dexamethasone (Dex) induce osteogenesis of postnatal stem cells. The objective of this study was to examine the effects of RA and Dex on the proliferation and osteogenic differentiation of SHED and PDLSC and to compare the osteogenic characteristics of SHED and PDLSC under RA treatment. SHED and PDLSC were treated with serum-free medium either alone or supplemented with RA or Dex for 21 days. The proliferation of SHED and PDLSC was significantly inhibited by both RA and Dex. RA significantly upregulated gene expression and the activity of alkaline phosphatase in SHED and PDLSC. Positive Alizarin red and von Kossa staining of calcium deposition was seen on the RA-treated SHED and PDLSC after 21 days of culture. The influences of RA on the osteogenic differentiation of SHED and PDLSC were significantly stronger than with Dex. Supplemention with insulin enhanced RA-induced osteogenic differentiation of SHED. Thus, RA is an effective inducer of osteogenic differentiation of SHED and PDLSC, whereas RA treatment in combination with insulin supplementation might be a better option for inducing osteogenic differentiation. Significantly higher cell proliferation of PDLSC results in greater calcium deposition after 3-week culture, suggesting that PDLSC is a better osteogenic stem cell source. This study provides valuable information for efficiently producing osteogenically differentiated SHED or PDLSC for in vivo bone regeneration.  相似文献   

10.
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restrictive interests, and repetitive stereotypic behaviors. Among the various mechanisms underlying the pathogenesis of ASD, dysfunctions of dopaminergic signaling and mitochondria have been hypothesized to explain the core symptoms of children with ASD. However, only a few studies focusing on the pathological association between dopaminergic neurons (DN) and mitochondria in ASD have been performed using patient-derived stem cells and in vitro differentiated neurons. Stem cells from human exfoliated deciduous teeth (SHED) are neural crest-derived mesenchymal stem cells present in the dental pulp of exfoliated deciduous teeth; these cells can differentiate into dopaminergic neurons (DN) in vitro. This study aimed to investigate the pathological association between development of DN and mitochondria in ASD by using SHED as a disease- or patient-specific cellular model. The SHED obtained from three children with ASD and three typically developing children were differentiated into DN, and the neurobiology of these cells was examined. The DN derived from children with ASD showed impaired neurite outgrowth and branching, associated with decreased mitochondrial membrane potential, ATP production, number of mitochondria within the neurites, amount of mitochondria per cell area and intracellular calcium level. In addition, impaired neurite outgrowth and branching of ASD-derived DN were not improved by brain-derived neurotrophic factor (BDNF), suggesting impairment of the BDNF signaling pathway in ASD. These results imply that intracerebral dopamine production may have decreased in these children. The earliest age at which deciduous teeth spontaneously exfoliate in humans, and SHED can be noninvasively collected, is approximately 6 years. Our results suggest that in vitro analysis of SHED-derived DN obtained from children with ASD provides neurobiological information that may be useful in determining treatment strategies in the early stages of ASD.  相似文献   

11.
Stem cell fate can be induced by the grade of stiffness of the extracellular matrix, depending on the developed tissue or complex tissues. For example, a rigid extracellular matrix induces the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs), while a softer surface induces the osteogenic differentiation in dental follicle cells (DFCs). To determine whether differentiation of ectomesenchymal dental precursor cells is supported by similar grades of extracellular matrices (ECMs) stiffness, we examined the influence of the surface stiffness on the proliferation and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED). Cell proliferation of SHED was significantly decreased on cell culture surfaces with a muscle-like stiffness. A dexamethasone-based differentiation medium induced the osteogenic differentiation of SHED on substrates of varying mechanical stiffness. Here, the hardest surface improved the induction of osteogenic differentiation in comparison to that with the softest stiffness. In conclusion, our study showed that the osteogenic differentiation of ectomesenchymal dental precursor cells SHED and DFCs are not supported by similar grades of ECM stiffness.  相似文献   

12.
Previous studies have revealed that long noncoding RNA (lncRNA) and microRNA play a crucial role in autism, which is a childhood neurodevelopmental disorder with complicated genetic origins. Hence, the study concerns whether lncRNA C21orf121/bone morphogenetic proteins 2 (BMP2)/miR-140-5p gene network affects directed differentiation of stem cells from human exfoliated deciduous teeth (SHED) to neuronal cells in rats with autism. Autism models were successfully established. The neuron cells that differentiated from SHED cell were identified. The expression of lncRNA C21orf121, miR-140-5p, BMP2, Nestin, βIII-tubulin, and microtubule-associated protein 2 (MAP2) and the expression of neuron-specific enolase (NSE) were examined. Besides, the gap junction (GJ) function of SHED, the intracellular free Ca 2+ concentration, and the social behavior and repetitive stereotyped movements of rats in autism were detected. The target relationship between lncRNA C21orf121 and miR-140-5p and that between miR-140-5p and BMP2 were also verified. Firstly, we successfully isolated SHED and identified the differentiated neurons of SHED. Besides, the expression of BMP2, MAP2, Nestin, βIII-tubulin, NSE positive rate, GJ function, and intracellular free Ca 2+ concentration were increased with the upregulation of C21orf121 and downregulation of miR-140-5p, and accumulated time of repetitive stereotyped movements decreased and the frequency of social behavior increased. The results indicate that lncRNA C21orf121 as a competing endogenous RNA competes with BMP2 binding to miR-140-5p, thereby promoting SHED to differentiate into neuronal cells via upregulating BMP2 expression.  相似文献   

13.

Background

This study explored the neural differentiation and therapeutic effects of stem cells from human exfoliated deciduous teeth (SHED) in a rat model of Parkinson's disease (PD).

Methods

The SHED were isolated from fresh dental pulp and were induced to differentiate to neurons and dopamine neurons by inhibiting similar mothers against dpp (SMAD) signaling with Noggin and increase conversion of dopamine neurons from SHED with CHIR99021, Sonic Hedgehog (SHH) and FGF8 in vitro. The neural-primed SHED were transplanted to the striatum of 6-hydroxydopamine (6-OHDA)–induced PD rats to evaluate their neural differentiation and functions in vivo.

Results

These SHED were efficiently differentiated to neurons (62.7%) and dopamine neurons (42.3%) through a newly developed method. After transplantation, the neural-induced SHED significantly improved recovery of the motor deficits of the PD rats. The grafted SHED were differentiated into neurons (61%), including dopamine neurons (22.3%), and integrated into the host rat brain by forming synaptic connections. Patch clamp analysis showed that neurons derived from grafted SHED have the same membrane potential profile as dopamine neurons, indicating these cells are dopamine neuron-like cells. The potential molecular mechanism of SHED transplantation in alleviating motor deficits of the rats is likely to be mediated by neuronal replacement and immune-modulation as we detected the transplanted dopamine neurons and released immune cytokines from SHED.

Conclusion

Using neural-primed SHED to treat PD showed significant restorations of motor deficits in 6-OHDA–induced rats. These observations provide further evidence that SHED can be used for cell-based therapy of PD.  相似文献   

14.
Recently, extracted teeth have been identified as a viable source of stem cells for tissue regenerative approaches. Current expansion of these cells requires incorporation of animal sera; yet, a fundamental issue underlying cell cultivation methods for cell therapy regards concerns in using animal sera. In this study, we investigated the development of a chemically defined, serum‐free media (K‐M) for the expansion of human periodontal ligament stem cells (PDLSCs) and human stem cells from exfoliated deciduous teeth (SHEDs). Proliferation assays were performed comparing cells in serum‐containing media (FBS‐M) with cells cultured in four different serum‐free medium and these demonstrated that in these medium, the cell proliferation of both cell types was significantly less than the proliferation of cells in FBS‐M. Additional proliferation assays were performed using pre‐coated fibronectin (FN) tissue culture plates and of the four serum‐free medium, only K‐M enabled PDLSCs and SHEDs to proliferate at higher rates than cells cultured in FBS‐M. Next, alkaline phosphatase activity showed that PDLSCs and SHEDs exhibited similar osteogenic potential whether cultured in K‐M or FBS‐M, and, additionally, cells retained their multipotency in K‐M as seen by expression of chondrogenic and adipogenic genes, and positive Von Kossa, Alcian blue, and Oil Red O staining. Finally, differential expression of 84 stem cell associated genes revealed that for most genes, PDLSCs and SHEDs did not differ in their expression regardless of whether cultured in K‐M or FBS‐M. Taken together, the data suggest that K‐M can support the expansion of PDLSCs and SHEDs and maintenance of their multipotency. J. Cell. Physiol. 226: 66–73, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Stem cells from human exfoliated deciduous teeth are a population of highly proliferative postnatal stem cells and have been characterized as multipotent stem cells. In this study we developed a fast and sensitive method for stem cells derived from human exfoliated deciduous teeth count, using a luminescent viability assay. We isolated stem cells from normal exfoliated deciduous teeth using collagenase/dispase digestions solutions. Separated stem cells were placed in opaque-walled multiwall plates in culture alpha Modified Eagle’s Medium. For dental pulp stem cells quantitation we used a simple method for determining the number of viable cells based on ATP concentration. Cells attached to the bottom of the multiwall plates were counted with the luminescent assay and were cultured for mesenchymal markers expression. Moreover cells attached to the bottom of the multiwall plates were directed toward the osteogenic, adipogenic, lineages at the respective passages. Flow cytometry was used for immunophenotyping of cultured dental stem cells from exfoliated deciduous teeth. Cells that were counted with the luminescent assay, after culture formed fibroblastic morphology and were expressed the mesenchymal stem cell markers CD29, CD105, CD146, CD44. There was a correlation between the number of cells plated for culture and the number of mesenchymal stem cells after culture. Osteogenic and adipogenic differentiation of the cells counted with the luminescent assay was performed. The luminescent signal of viable mesenchymal dental stem cells isolated from dental pulp of exfoliated teeth represents an ideal method for mesenchymal stem cells count before culturing.  相似文献   

16.
BackgroundAcute kidney injury (AKI) is a critical condition associated with high mortality. However, the available treatments for AKI are limited. Stem cells from human exfoliated deciduous teeth (SHED) have recently gained attention as a novel source of stem cells. The purpose of this study was to clarify whether SHED have a therapeutic effect on AKI induced by ischemia-reperfusion injury.MethodsThe left renal artery and vein of the mice were clamped for 20 min to induce ischemia. SHED, bone marrow derived mesenchymal stem cells (BMMSC) or phosphate-buffered saline (control) were administered into the subrenal capsule. To confirm the potency of SHED in vitro, H2O2 stimulation assays and scratch assays were performed.ResultsThe serum creatinine and blood urea nitrogen levels of the SHED group were significantly lower than those of the control group, while BMMSC showed no therapeutic effect. Infiltration of macrophages and neutrophils in the kidney was significantly attenuated in mice treated with SHED. Cytokine levels (MIP-2, IL-1β, and MCP-1) in mice kidneys were significantly reduced in the SHED group. In in vitro experiments, SHED significantly decreased MCP-1 secretion in tubular epithelial cells (TEC) stimulated with H2O2. In addition, SHED promoted wound healing in the scratch assays, which was blunted by anti-HGF antibodies.DiscussionSHED attenuated the levels of inflammatory cytokines and improved kidney function in AKI induced by IRI. SHED secreted factors reduced MCP-1 and increased HGF expression, which promoted wound healing. These results suggest that SHED might provide a novel stem cell resource, which can be applied for the treatment of ischemic kidney injury.  相似文献   

17.

Background

Mesenchymal stem cells have prominent immune modulatory properties, which may have clinical applications; however their major source, bone marrow, is of limited availability. On the other hand, mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs) are readily accessible, but their immune regulatory properties have not been completely investigated. This study was designed, therefore, to evaluate the SHEDs influence on DCs differentiation, maturation, ability to activate T cells and to expand CD4+Foxp3+ T cells.

Methodology/Principal Findings

The experiments were based in cellular co-culture during differentiation and maturation of monocyte derived-DCs (moDCs), with, or not, presence of SHEDs. After co-culture with SHEDs, (moDCs) presented lower expression of BDCA-1 and CD11c, in comparison to DC cultivated without SHEDs. CD40, CD80, CD83 and CD86 levels were also decreased in mature DCs (mDCs) after co-cultivation with SHEDs. To assess the ability of SHEDs-exposed moDCs to modulate T cell responses, the former were separated from SHEDs, and co-cultured with peripheral blood lymphocytes. After 5 days, the proliferation of CD4+ and CD8+ T cells was evaluated and found to be lower than that induced by moDCs cultivated without SHEDs. In addition, an increase in the proportion of CD4+Foxp3+IL-10+ T cells was observed among cells stimulated by mature moDCs that were previously cultivated with SHEDs. Soluble factors released during co-cultures also showed a reduction in the pro-inflammatory cytokines (IL-2, TNF-α and IFN-γ), and an increase in the anti-inflammatory molecule IL-10.

Conclusion/Significance

This study shows that SHEDs induce an immune regulatory phenotype in moDCs cells, evidenced by changes in maturation and differentiation rates, inhibition of lymphocyte stimulation and ability to expand CD4+Foxp3+ T cells. Further characterization and validation of this phenomenon could support the use of SHEDs, directly or indirectly for immune modulation in the clinical practice.  相似文献   

18.
Platelet-rich plasma (PRP) is an emerging therapeutic application because PRP contains various growth factors that have beneficial effects on tissue regeneration and engineering. Mesenchymal stem cells and PRP derived from peripheral blood have been well studied. In this study, we investigated the effects of PRP derived from human umbilical cord blood (UCB-PRP) on proliferation, alkaline phosphatase (ALP) activity, and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs), dental pulp stem cells (DPSCs), and periodontal ligament stem cells (PDLSCs). Three types of dental stem cells were primarily isolated and characterized by flow cytometric analysis. Dental stem cells were exposed to various concentrations of UCB-PRP, which resulted in the proliferation of dental stem cells. Treatment with 2% UCB-PRP resulted in the highest level of proliferation. The ALP activity of DPSCs and PDLSCs increased following treatment with UCB-PRP in a dose-dependent manner up to a concentration of 2%. ALP activity decreased with higher concentration of UCB-PRP. The effects of UCB-PRP on calcium deposition were similar to those on proliferation and ALP activity. Treatment with 2% UCB-PRP resulted in the highest calcium depositions in DPSCs and PDLSCs; however, treatment with 1% UCB-PRP resulted in the highest calcium deposition in SHEDs. The concentrations of platelet-derived growth factor-AB and transforming growth factor-β1 in UCB-PRP were investigated and found to be comparable to the amounts in peripheral blood. Overall, UCB-PRP had beneficial effects on the proliferation and osteogenic differentiation of dental stem cells. Determination of the optimal concentration of UCB-PRP requires further investigation for clinical applications.  相似文献   

19.
Dental pulp cells release adenosine triphosphate (ATP) in response to intrapulpal pressure and the amount released depends on the magnitude of the pressure. ATP regulates the differentiation of stem cells into adipocytes and osteoblasts. However, it is unknown whether extracellular ATP influences the stemness and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs). Therefore, this study investigated the effects of extracellular ATP at a low (0.1 μM) and high (10 μM) concentration on the stemness and osteogenic differentiation of SHEDs. Cells were cultured in either growth medium or osteogenic medium with or without 0.1–10 μM ATP. In growth medium, both concentrations of ATP increased the mRNA expression of pluripotent and osteogenic markers. In contrast, in osteogenic medium, 0.1 μM ATP enhanced in vitro mineralization, whereas 10 μM ATP inhibited this process. In addition, 10 μM ATP stimulated the mRNA expression and activity of ectonucleotide pyrophosphatase/phosphodiesterase (ENPP), an enzyme that regulates the phosphate/pyrophosphate ratio. Thus, depending on the growth condition and its concentration, ATP stimulated stemness and in vitro mineralization or inhibited mineralization. In growth medium, both ATP concentrations stimulated pluripotent and osteogenic marker gene expression. However, in osteogenic medium, a biphasic effect was found on in vitro mineralization; the low concentration stimulated, whereas the high concentration inhibited, mineralization. We propose that ATP released due to mechanical stress modulates the stemness and differentiation of SHEDs. J. Cell. Biochem. 119: 488–498, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
Stem cells have been identified using the DNA-binding dye Hoechst 33342 and flow cytometry (FCM) in various tissues known as the side population (SP). The present study shows, for the first time, the presence of side population cells in human deciduous dental pulp cells (DPCs). Flow cytometric identification revealed that 2% of human deciduous DPCs were SP cells and that this SP profile disappeared in the presence of verapamil. The SP marker ABCG2 protein was localized to DPCs in the cell membrane by immunofluorescence staining, and flow cytometric analysis demonstrated that 3.6% of DPCs were ABCG2-positive. Furthermore, quantitative real-time PCR proved that ABCG2 mRNA expression in DPCs isolated from human exfoliated deciduous teeth was higher than in DPCs from permanent teeth. Our findings demonstrate that DPCs from human exfoliated deciduous teeth contain a higher proportion of the SP phenotype than permanent teeth and that they may constitute a stem cell population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号