首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The effect of salinity and different nitrogen sources on the level of xanthine dehydrogenase (XDH) activity in roots and leaves of pea plants was investigated. Two bands of xanthine dehydrogenase activity (XDH-R2, XDH-R3) were detected in roots after native PAGE and staining with hypoxanthine as substrate. Only one band of XDH activity (XDH-L1) was detected in leaf extracts. Within leaves of three different ages the highest XDH activity was detected in young leaves both under control as well as stress conditions. Salinity did not affect significantly the activity of XDH in pea roots, however, depressed XDH activity in leaves. A significant increase of XDH activity both in roots and leaves was observed only when ammonium was applied as the sole N source. Increased concentration of ureides in the xylem sap of pea plants was observed for both ammonium and high salt treatments, although the higher content of ureides in the xylem sap of 100 mM NaCl treated plants may be rather a result of lower rate of exudation from roots than of increased root ureide biosynthesis. Thus, the changes of root and leaf XDH activity in pea plants seem to be tightly correlated with ureide synthesis that is induced by NH 4 + , the product of N fixation, and rather than by salinity. A contribution of pea XDH in increased oxygen species or uric acid production under saline conditions seems to be less than likely.  相似文献   

3.
In anti-sense and RNA interference transgenic plants of Coffea canephora in which the expression of CaMXMT1 was suppressed, caffeine biosynthesis from [8-(14)C]adenine was investigated, together with the overall metabolism of [8-(14)C]adenine. Compared with wild type control plants, total purine alkaloid biosynthesis from adenine and conversion of theobromine to caffeine were both reduced in the transgenic plants. As found previously, [8-(14)C]adenine was metabolised to salvage products (nucleotides and RNA), to degradation products (ureides and CO(2)) and to purine alkaloids (theobromine and caffeine). In the transgenic plants, metabolism of [8-(14)C]adenine shifted from purine alkaloid synthesis to purine catabolism or salvage for nucleotides. HPLC analysis revealed a significantly reduced caffeine content in the transgenic plants. A small quantity (less than 20 nmol g(-1) fresh weight) of xanthosine had accumulated in at least one of the transgenic plants.  相似文献   

4.
A system was devised for the in vitro culture of soybean fruits. The culture system consisted of a single fruit attached to a short piece of stem through which the nutrients were supplied. The fruit explants were taken when pods were fully expanded and the seeds at initial stages of growth. During a 7-day culture period, the seeds accumulated dry matter and protein in quantities comparable to those in situ. Omission of the C source (sucrose) from the medium resulted in no dry matter accumulation in the seeds, but omission of the N source (glutamine) still led to some protein accumulation, indicating mobilization of N from other parts of the fruit explant. Optimum protein accumulation occurred when glutamine was supplied at 1.2 mg N ml-1. Protein accumulation in the seeds was highly dependent on the nature of the N source. Glutamine, asparagine and the ureide, allantoin, were equally the most efficient sources, whereas several other amino acids tested showed lower degrees of efficiency. The data indicate a high metabolic capacity of the fruit tissues for principal N transport compounds of soybean, namely allantoin, asparagine and glutamine. The culture system described should prove useful for developmental and metabolic studies where the complex influence of the rest of the plant is to be avoided.Abbreviations ALN allantoin - ALC allantoic acid Preliminary report presented at the IV World Soybean Research Conference, Buenos Aires, Arggentina, March 1989.  相似文献   

5.
Keya CA  Crozier A  Ashihara H 《FEBS letters》2003,554(3):473-477
The effects of ribavirin, an inhibitor of inosine-5'-monophosphate (IMP) dehydrogenase, on [8-(14)C]inosine metabolism in tea leaves, coffee leaves and coffee fruits were investigated. Incorporation of radioactivity from [8-(14)C]inosine into purine alkaloids, such as theobromine and caffeine, guanine residues of RNA, and CO(2) was reduced by ribavirin, while incorporation into nucleotides, including IMP and adenine residues of RNA, was increased. The results indicate that inhibition of IMP dehydrogenase by ribavirin inhibits both caffeine and guanine nucleotide biosynthesis in caffeine-forming plants. The use of IMP dehydrogenase-deficient plants as a potential source of good quality caffeine-deficient tea and coffee plants is discussed.  相似文献   

6.
7.
Caffeine (1,3,7–trimethylxanthine) is one of the most widely used plant secondary metabolites, primarily as a stimulant and an ingredient in drugs. In nature, caffeine is believed to function in chemical defense, acting as an antiherbivory and allelopathic agent, and therefore it might be employed to protect agriculturally important crop plants. In coffee plants, caffeine is synthesized from the precursor xanthosine in four steps, three N-methylations and removal of ribose. We had previously isolated genes encoding three distinct N-methyltransferases, and we demonstrated production of recombinant enzymes that yielded caffeine in in vitro reconstitution experiments. When these caffeine biosynthetic pathway genes were simultaneously expressed in tobacco plants (Nicotiana tabacum), caffeine was successfully produced up to 5 μg/g fresh weight in leaves. The leaves were unpalatable to tobacco cutworms (Spodoptera litura). This repellent action appeared to be more widely␣applicable to lepidopteran caterpillars as observed with small white (Pieris rapae) fed on Chinese cabbages that had been top-treated with caffeine. Our recent results suggest a novel approach to strengthen anti-herbivore traits by producing caffeine in crop plants.  相似文献   

8.
Plant acquisition of organic nitrogen in boreal forests   总被引:12,自引:0,他引:12  
Research on plant nitrogen (N) uptake and metabolism has more or less exclusively concerned inorganic N, particularly nitrate. Nevertheless, recent as well as older studies indicate that plants may have access to organic N sources. Laboratory studies have shown that ectomycorrhizal and ericoid mycorrhizal plants can degrade polymeric N and absorb the resulting products. Recent studies have also shown that some non‐mycorrhizal plants are able to absorb amino acids. Moreover, amino acid transporters have been shown to be present in both plant roots and in mycorrhizal hyphae. Although both mycorrhizal and non‐mycorrhizal plants appear to have a capacity for absorbing a range of organic N compounds, is this capacity realized in the field? Several lines of evidence show that plants are outcompeted by microorganisms for organic N sources. Such studies, however, have not addressed the issue of spatial and temporal separation between plants and microorganisms. Moreover, competition studies have not been able to separate uptake by symbiotic and non‐symbiotic microorganisms. Qualitative assessment of organic N uptake by plants has been performed with dual‐labelled glycine in several studies. These studies arrive at different conclusions: some indicate that plants do not absorb this organic N source when competing with other organisms in soil, while others conclude that significant fractions of amino acid N are absorbed as intact amino acid. These variable results may reflect species differences in the ability to absorb glycine as well as differences in experimental conditions and analytical techniques. Although theoretical calculations indicate that organic N might add significant amounts of N to plant N uptake, direct quantitative assessment of the fraction of plant N derived from uptake by organic N sources is a challenge for future research.  相似文献   

9.
King CA  Purcell LC 《Plant physiology》2005,137(4):1389-1396
Decreased N2 fixation in soybean (Glycine max) L. Merr. during water deficits has been associated with increases in ureides and free amino acids in plant tissues, indicating a potential feedback inhibition by these compounds in response to drought. We evaluated concentrations of ureides and amino acids in leaf and nodule tissue and the concurrent change in N2 fixation in response to exogenous ureides and soil-water treatments for the cultivars Jackson and KS4895. Exogenous ureides applied to the soil and water-deficit treatments inhibited N2 fixation by 85% to 90%. Mn fertilization increased the apparent catabolism of ureides in leaves and hastened the recovery of N2 fixation following exogenous ureide application for both cultivars. Ureides and total free amino acids in leaves and nodules increased during water deficits and coincided with a decline in N2 fixation for both cultivars. N2 fixation recovered to 74% to 90% of control levels 2 d after rewatering drought-stressed plants, but leaf ureides and total nodule amino acids remained elevated in KS4895. Asparagine accounted for 82% of the increase in nodule amino acids relative to well-watered plants at 2 d after rewatering. These results indicate that leaf ureides and nodule asparagine do not feedback inhibit N2 fixation. Compounds whose increase and decrease in concentration mirrored the decline and recovery of N2 fixation included nodule ureides, nodule aspartate, and several amino acids in leaves, indicating that these are potential candidate molecules for feedback inhibition of N2 fixation.  相似文献   

10.
Summary The nitrogenous compounds in the xylem (bleeding) sap of lines of field-grownPhaseolus vulgaris L., known to vary in N2 fixation and yield, were measured during growth with and without N fertilizer. Forty nine-67% of the total sap N was in the form of nitrate in fertilized plants, with low amounts of the ureides, allantoin and allantoic acid (4–12%). Ureides contributed between 17 and 38% to the total sap N of non-fertilized plants, with nitrate generally comprising less than 40%. Among the nine lines grown without fertilizer there were significant differences in the % of the sap N as ureides and also in the total mol N ml–1 sap.The ASN/GLN ratio (mol/mol) was greater in sap collected from the two parental lines given fertilizer compared with non-fertilized plants. However the actual ratio varied between the parental lines. Together the two amides generally comprised between 43–62% of the amino-N in sap samples from the two parental lines with or without N fertilizer.For each N treatment (fertilized or non-fertilized) there were no obvious differences in sap composition between the high N2 fixing lines and the low N2 fixing lines. However there was generally a positive relationship between the rate of N translocation (total N concn. ml–1 sap x rate of exudation) and the ranking of the lines on the basis of higher N2 fixation rates (acetylene reduction), which was to a large extent independent of the source of N available to the plant.  相似文献   

11.
12.
The synthesis, transport and assimilation of the ureides, allantoin and allantoic acid, in higher plants is reviewed. Evidence indicates that in nodulated legumes ureides are synthesized from products of N2-fixation via purine synthesis and degradation. Their synthesis in other plants also appears to be via purine degradation but is dependent on the inorganic nitrogen source fed to the plant; greatest ureide production is associated with ammonium assimilation. The use of ureides rather than amides for N-transport from the root to the shoot via the xylem stream results in an improved carbon economy of the plant. Good evidence for the transport of ureides in the phloem is lacking for most species examined although it is assumed to be important, particularly in fruit and seed development. Ureides are stored and assimilated mainly in the shoot. The precise pathways, localization and regulation of ureide assimilation are poorly understood and require further investigation. Similarities exist between the properties of the enzymes involved in ureide assimilation in higher plants and in micro-organisms. However, the evidence that light appears to be involved in ureide assimilation in green tissues suggests that different regulatory mechanisms may exist in plants compared with micro-organisms. The economically important legume crops such as soybeans, cowpeas and Phaseolus sp. are all ureide producers. To aid our understanding of the productivity of these plants knowledge of how ureide-N is converted into seed protein is essential.  相似文献   

13.
Omega-3 fatty acids and antioxidants in edible wild plants   总被引:2,自引:0,他引:2  
Human beings evolved on a diet that was balanced in the omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and was high in antioxidants. Edible wild plants provide alpha-linolenic acid (ALA) and higher amounts of vitamin E and vitamin C than cultivated plants. In addition to the antioxidant vitamins, edible wild plants are rich in phenols and other compounds that increase their antioxidant capacity. It is therefore important to systematically analyze the total antioxidant capacity of wild plants and promote their commercialization in both developed and developing countries. The diets of Western countries have contained increasingly larger amounts of linoleic acid (LA), which has been promoted for its cholesterol-lowering effect. It is now recognized that dietary LA favors oxidative modification of low density lipoprotein (LDL) cholesterol and increases platelet response to aggregation. In contrast, ALA intake is associated with inhibitory effects on the clotting activity of platelets, on their response to thrombin, and on the regulation of arachidonic acid (AA) metabolism. In clinical studies, ALA contributed to lowering of blood pressure, and a prospective epidemiological study showed that ALA is inversely related to the risk of coronary heart disease in men. Dietary amounts of LA as well as the ratio of LA to ALA appear to be important for the metabolism of ALA to longer-chain omega-3 PUFAs. Relatively large reserves of LA in body fat. as are found in vegans or in the diet of omnivores in Western societies, would tend to slow down the formation of long-chain omega-3 fatty acids from ALA. Therefore, the role of ALA in human nutrition becomes important in terms of long-term dietary intake. One advantage of the consumption of ALA over omega-3 fatty acids from fish is that the problem of insufficient vitamin E intake does not exist with high intake of ALA from plant sources.  相似文献   

14.
15.
The green scale, Coccus viridis (Green) (Hemiptera: Coccidae), is an insect pest of coffee and several other perennial cultivated plant species. We investigated changes in alkaloid and phenolic contents in coffee plants as a response to herbivory by this insect. Greenhouse‐grown, 11‐month‐old coffee plants were artificially infested with the coccid and compared with control, uninfested plants. Leaf samples were taken at 15, 30, 45, and 60 days after infestation, and high‐performance liquid chromatography was used to identify and quantify alkaloid and phenolic compounds induced by the coccids at each sampling date. Of the compounds investigated, caffeine was the main coffee alkaloid detected in fully developed leaves, and its concentration in infested plants was twice as high as in the control plants. The main coffee phenolics were caffeic and chlorogenic acid, and a significant increase in their concentrations occurred only in plants infested by C. viridis. A positive and significant relationship was found between alkaloid and phenolic concentrations and the infestation level by adults and nymphs of C. viridis. Caffeine and chlorogenic acid applied on coffee leaves stimulated the locomotory activity of the green scale, thus reducing their feeding compared to untreated leaves. This is the first study to show increased levels of coffee alkaloids and phenolics in response to herbivory by scale insects. The elevation of caffeine and chlorogenic acid levels in coffee leaves because of C. viridis infestation seems to affect this generalist insect by stimulating the locomotion of crawlers.  相似文献   

16.
The ureides allantoin and allantoate are key molecules in the transport and storage of nitrogen in ureide legumes. In shoots and leaves from Phaseolus vulgaris plants using symbiotically fixed nitrogen as the sole nitrogen source, ureide levels were roughly equivalent to those of nitrate-supported plants during the whole vegetative stage, but they exhibited a sudden increase at the onset of flowering. This rise in the level of ureides, mainly in the form of allantoate, was accompanied by increases in allantoinase gene expression and enzyme activity, consistent with developmental regulation of ureide levels mainly through the tissue-specific induction of allantoate synthesis catalysed by allantoinase. Moreover, surprisingly high levels of ureides were also found in non-nodulated plants fertilized with nitrate, at both early and late developmental stages. The results suggest that remobilized N from lower leaves is probably involved in the sharp rise in ureides in shoots and leaves during early pod filling in N(2)-fixing plants and in the significant amounts of ureides observed in non-nodulated plants.  相似文献   

17.
Aminolevulinic acid (ALA) is formed by the enzyme ALA synthase (hemA gene). Then ALA is converted to Porphobilinogen (PBG) by the ALA dehydratase (hemB gene). For the overproduction of ALA, we used an Escherichia coli BL21(DE3) containing a hemA gene from Bradyrhzobium japonicum, which was created in our previous work. The effects of pH on the ALA synthase and ALA dehydratase were investigated. The ALA synthase and ALA dehydratase activities were dependent on the pH of the medium, with maximal activities occurring at pH 6.5 and 8.0 respectively. At pH 6.5, extracellular ALA reached 23 mM in a jar-fermenter. In addition, the effects of some nutritional factors, such as nitrogen source and the ratio of carbon to nitrogen (C/N) on the fermentative production of ALA were investigated. The highest ALA production was found with 8:1 of C/N ratio. Among various nitrogen sources, the tryptone might be a useful one for ALA production.  相似文献   

18.
Breeding of caffeine-free coffee cultivars require tools for an early selection of progenies bearing this later trait. Genes from caffeine synthesis and degradation represent major targets for the development of molecular markers for assisted selection. In this study, we characterized SNPs identified on the caffeine synthase gene from AC1 mutant, a naturally caffeine-free arabica coffee plant. Molecular analysis of normal and mutant sequences indicates the occurrence of SNPs in protein domains, potentially associated with caffeine synthesis in coffee. Progenies F2, F1BC1 and BC from crosses of AC mutants and elite cultivars were evaluated regarding caffeine content in grains and genomic segregation profile of selected SNPs. Genotyping analysis allowed the discrimination between homozygous and heterozygous plants. Quantification of caffeine content indicated a significant variability among progenies and a low frequency of caffeine-free plants. Statistical analyses of genotyping and phenotyping results showed significant association between presence of selected SNPs and reduced caffeine content. Moreover, this association occurs through all evaluated genetic backgrounds and generations, indicating an inheritance stability of both trait and markers. The molecular markers described here represent a successful case of assisted-selection in coffee, indicating their potential use for breeding of caffeine-free cultivars.  相似文献   

19.
AIMS: To evaluate caffeine degradation and nitrogen requirements during Aspergillus tamarii growth in submerged culture. METHODS AND RESULTS: Aspergillus tamarii spores produced on a coffee infusion agar medium added with sucrose were used. Several caffeine and ammonium sulphate concentrations (0-1 and 0-1.36 g l-1, respectively) were tested simultaneously on fungal biomass production and caffeine degradation. An additional caffeine pulse (4 g l-1) was added for all experiments after 48 h of fermentation. Results revealed that when using 0.90 g l-1 of caffeine and 0.14 g l-1 of ammonium sulphate, biomass production and caffeine degradation were enhanced. Highest biomass production (Xmax = 9.87 g l-1) with a specific growth rate (micro) of 0.073 h-1 and caffeine degradation rate of 0.033 g l-1 h-1, was observed under these conditions. CONCLUSIONS: Caffeine degradation as well as biomass production were characterized. SIGNIFICANCE AND IMPACT OF THE STUDY: These studies set the stage for future characterization studies of intracellular enzymes involved in caffeine degradation. Moreover, results observed may help in the biotreatment of residues from the coffee agroindustry.  相似文献   

20.
以[8-14C]标记的腺嘌呤和黄嘌呤为底物,对两种可以合成少量咖啡碱和茶叶碱的木荷属和柃木属植物(Schima mertensiana,Eurya japonica)叶片的嘌呤代谢进行了检测研究。发现木荷属和柃木属植物中嘌呤代谢相似,14C标记的腺嘌呤可以整合到嘌呤核苷酸、RNA、酰脲(包括尿囊素和尿囊酸)、二氧化碳中。经过24 h培养,在叶片吸收的放射能中,仅有6%~7%用于甲基黄嘌呤类化合物的合成(3-甲基黄嘌呤、7-甲基黄嘌呤核苷、7-甲基黄嘌呤、茶叶碱)。和其他植物一样,绝大多数14C标记的黄嘌呤整合到嘌呤的分解代谢物中(二氧化碳和酰脲),少量的放射能分布在3-甲基黄嘌呤及茶叶碱中。根据结果可以推断木荷属和柃木属植物具有N-甲基转移酶活性,可以用来合成咖啡碱和茶叶碱,相对于茶树而言,活性不高。综上,本文对木荷属和柃木属植物的嘌呤代谢以及嘌呤碱合成进行了研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号