首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most important cause of developing hereditary breast cancer is germline mutations occurring in breast cancer (BCs) susceptibility genes, for example, BRCA1, BRCA2, TP53, CHEK2, PTEN, ATM, and PPM1D. Many BC susceptibility genes can be grouped into two classes, high- and low-penetrance genes, each of which interact with multiple genes and environmental factors. However, the penetrance of genes can also be represented by a spectrum, which ranges between high and low. Two of the most common susceptibility genes are BRCA1 and BRCA2, which perform vital cellular functions for repair of homologous DNA. Loss of heterozygosity accompanied by hereditary mutations in BRCA1 or BRCA2 increases chromosomal instability and the likelihood of cancer, as well as playing a key role in stimulating malignant transformation. With regard to pathological features, familial breast cancers caused by BRCA1 mutations usually differ from those caused by BRCA2 mutations and nonfamilial BCs. It is essential to acquire an understanding of these pathological features along with the genetic history of the patient to offer an individualized treatment. Germline mutations in BRCA1 and BRCA2 genes are the main genetic and inherited factors for breast and ovarian cancer. In fact, these mutations are very important in developing early onset and increasing the risk of familial breast and ovarian cancer and responsible for 90% of hereditary BC cases. Therefore, according to the conducted studies, screening of BRCA1 and BRCA2 genes is recommended as an important marker for early detection of all patients with breast or ovarian cancer risk with family history of the disease. In this review, we summarize the role of hereditary genes, mainly BRCA1 and BRCA2, in BC.  相似文献   

2.
We recently reported that a sequence variant in the cell-cycle-checkpoint kinase CHEK2 (CHEK2 1100delC) is a low-penetrance breast cancer-susceptibility allele in noncarriers of BRCA1 or BRCA2 mutations. To investigate whether other CHEK2 variants confer susceptibility to breast cancer, we screened the full CHEK2 coding sequence in BRCA1/2-negative breast cancer cases from 89 pedigrees with three or more cases of breast cancer. We identified one novel germline variant, R117G, in two separate families. To evaluate the possible association of R117G and two germline variants reported elsewhere, R145W and I157T with breast cancer, we screened 737 BRCA1/2-negative familial breast cancer cases from 605 families, 459 BRCA1/2-positive cases from 335 families, and 723 controls from the United Kingdom, the Netherlands, and North America. All three variants were rare in all groups, and none occurred at significantly elevated frequency in familial breast cancer cases compared with controls. These results indicate that 1100delC may be the only CHEK2 allele that makes an appreciable contribution to breast cancer susceptibility.  相似文献   

3.
The genetic etiology of hereditary breast cancer has not been fully elucidated. Although germline mutations of high-penetrance genes such as BRCA1/2 are implicated in development of hereditary breast cancers, at least half of all breast cancer families are not linked to these genes. To identify a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population, we performed an analysis of germline mutations in 2,165 coding exons of 152 genes associated with hereditary cancer using next-generation sequencing (NGS) in 99 breast cancer patients from families of cancer patients regardless of cancer types. Forty-two deleterious germline mutations were identified in 21 genes of 34 patients, including 18 (18.2%) BRCA1 or BRCA2 mutations, 3 (3%) TP53 mutations, 5 (5.1%) DNA mismatch repair gene mutations, 1 (1%) CDH1 mutation, 6 (6.1%) Fanconi anemia pathway gene mutations, and 9 (9.1%) mutations in other genes. Of seven patients who carried mutations in more than one gene, 4 were BRCA1/2 mutation carriers, and their average onset age was much younger than patients with only BRCA1/2 mutations. Almost all identified high-penetrance gene mutations in those families fulfill the typical phenotypes of hereditary cancer syndromes listed in the National Comprehensive Cancer Network (NCCN) guidelines, except two TP53 and three mismatch repair gene mutations. Furthermore, functional studies of MSH3 germline mutations confirmed the association between MSH3 mutation and tumorigenesis, and segregation analysis suggested antagonism between BRCA1 and MSH3. We also identified a lot of low-penetrance gene mutations. Although the clinical significance of those newly identified low-penetrance gene mutations has not been fully appreciated yet, these new findings do provide valuable epidemiological information for the future studies. Together, these findings highlight the importance of genetic testing based on NCCN guidelines and a multi-gene analysis using NGS may be a supplement to traditional genetic counseling.  相似文献   

4.
最近10多年来,包括最重要的BRCA1/2在内的多种女性乳腺癌发生发展相关易感基因获得鉴定,并依据其肿瘤风险相关性程度被分别归入高、中和低外显率组别.随后它们的遗传学变异及致病机制研究在世界范围内得以广泛深入地开展,并揭示出其胚系突变具有人群或地域差异性,且局限于仅占10%~20%家族遗传性和早发性乳腺癌的狭窄分布概貌.这些结果转而提示对于大量散发性乳腺癌发病分子机制的研究而言,必须更深入地探讨多重低风险易感多态性复合效应的影响.  相似文献   

5.
Many important advances have been made in the past decade in understanding breast cancer at the molecular level, and two important high-penetrance breast cancer genes--BRCA1 and BRCA2--have been identified. However, germline mutations in these two genes are responsible for only a minority (approximately 5%) of all breast carcinomas, and the genes responsible for the majority of breast cancer cases remain to be identified. There is evidence that there are additional high-to-moderate-penetrance breast cancer susceptibility genes but, given the high degree of molecular heterogeneity in breast carcinomas, it is likely that each of these genes is responsible for only a subset of cases. There are also many candidate low-penetrance breast cancer genes and many more are likely to be identified. In addition to germline, and somatic, sequence alterations, epigenetic changes in many genes are likely to play an important role in the pathobiology of breast cancer. Recently developed genomic technologies and the completion of the human genome sequence provide us with powerful tools to identify novel candidate breast cancer genes that could play an important role in breast tumourigenesis.  相似文献   

6.
Pavard S  Metcalf CJ 《PloS one》2007,2(11):e1206
The magnitude of negative selection on alleles involved in age-specific mortality decreases with age. This is the foundation of the evolutionary theory of senescence. Because of this decrease in negative selection with age, and because of the absence of reproduction after menopause, alleles involved in women's late-onset diseases are generally considered evolutionarily neutral. Recently, genetic and epidemiological data on alleles involved in late onset-diseases have become available. It is therefore timely to estimate selection on these alleles. Here, we estimate selection on BRCA1 alleles leading to susceptibility to late-onset breast and ovarian cancer. For this, we integrate estimates of the risk of developing a cancer for BRCA1-carriers into population genetics frameworks, and calculate selection coefficients on BRCA1 alleles for different demographic scenarios varying across the extent of human demography. We then explore the magnitude of negative selection on alleles leading to a diverse range of risk patterns, to capture a variety of late-onset diseases. We show that BRCA1 alleles may have been under significant negative selection during human history. Although the mean age of onset of the disease is long after menopause, variance in age of onset means that there are always enough cases occurring before the end of reproductive life to compromise the selective value of women carrying a susceptibility allele in BRCA1. This seems to be the case for an extended range of risk of onset functions varying both in mean and variance. This finding may explain the distribution of BRCA1 alleles' frequency, and also why alleles for many late-onset diseases, like certain familial forms of cancer, coronary artery diseases and Alzheimer dementia, are typically recent and rare. Finally, we discuss why the two most popular evolutionary theories of aging, mutation accumulation and antagonistic pleiotropy, may underestimate the effect of selection on survival at old ages.  相似文献   

7.
Genetic heterogeneity in hereditary breast cancer: role of BRCA1 and BRCA2.   总被引:7,自引:4,他引:3  
The common hereditary forms of breast cancer have been largely attributed to the inheritance of mutations in the BRCA1 or BRCA2 genes. However, it is not yet clear what proportion of hereditary breast cancer is explained by BRCA1 and BRCA2 or by some other unidentified susceptibility gene(s). We describe the proportion of hereditary breast cancer explained by BRCA1 or BRCA2 in a sample of North American hereditary breast cancers and assess the evidence for additional susceptibility genes that may confer hereditary breast or ovarian cancer risk. Twenty-three families were identified through two high-risk breast cancer research programs. Genetic analysis was undertaken to establish linkage between the breast or ovarian cancer cases and markers on chromosomes 17q (BRCA1) and 13q (BRCA2). Mutation analysis in the BRCA1 and BRCA2 genes was also undertaken in all families. The pattern of hereditary cancer in 14 (61%) of the 23 families studied was attributed to BRCA1 by a combination of linkage and mutation analyses. No families were attributed to BRCA2. Five families (22%) provided evidence against linkage to both BRCA1 and BRCA2. No BRCA1 or BRCA2 mutations were detected in these five families. The BRCA1 or BRCA2 status of four families (17%) could not be determined. BRCA1 and BRCA2 probably explain the majority of hereditary breast cancer that exists in the North American population. However, one or more additional genes may yet be found that explain some proportion of hereditary breast cancer.  相似文献   

8.
Understanding breast cancer risk ‐ where do we stand in 2005?   总被引:16,自引:0,他引:16  
Breast cancer is the most frequent cancer in women and represents the second leading cause of cancer death among women (after lung cancer). The etiology of breast cancer is still poorly understood with known breast cancer risk factors explaining only a small proportion of cases. Risk factors that modulate the development of breast cancer discussed in this review include: age, geographic location (country of origin) and socioeconomic status, reproductive events, exogenous hormones, lifestyle risk factors (alcohol, diet, obesity and physical activity), familial history of breast cancer, mammographic density, history of benign breast disease, ionizing radiation, bone density, height, IGF- 1 and prolactin levels, chemopreventive agents. Additionally, we summarized breast cancer risk associated with the following genetic factors: breast cancer susceptibility high-penetrance genes (BRCA1, BRCA2, p53, PTEN, ATM, NBS1 or LKB1) and low-penetrance genes such as cytochrome P450 genes (CYP1A1, CYP2D6, CYP19), glutathione S-transferase family (GSTM1, GSTP1), alcohol and one-carbon metabolism genes (ADH1C and MTHFR), DNA repair genes (XRCC1, XRCC3, ERCC4/XPF) and genes encoding cell signaling molecules (PR, ER, TNFalpha or HSP70). All these factors contribute to a better understanding of breast cancer risk. Nonetheless, in order to evaluate more accurately the overall risk of breast tumorigenesis, novel genetic and phenotypic traits need to be identified.  相似文献   

9.
10.
Allelic variants of CHEK2 contribute to an elevated risk for human breast cancer and possibly other cancer types. In particular, the CHEK2*1100delC polymorphic variant has been identified as a low-penetrance breast cancer susceptibility allele in breast cancer families with wild type BRCA1 and BRCA2. To better understand the molecular basis by which this allele increases risk for disease, we have generated a mouse in which the wild type CHEK2 (Chk2 in mouse) allele has been replaced with the 1100delC variant. Mouse embryo fibroblasts (MEFs) derived from these mice have an altered cell cycle profile in which a far greater proportion of cells are in S-phase and in G2 (4N) compared with wild type cells. The mutant cells show signs of spontaneous genomic instability as indicated by polyploidy and an increase in DNA double strand breaks.  相似文献   

11.
《PloS one》2013,8(2)
The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10) diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC) and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles.  相似文献   

12.
乳腺癌易感基因BRCA1研究进展   总被引:2,自引:0,他引:2  
严景华  叶棋浓  黄翠芬 《遗传》2004,26(3):367-372
BRCA1是目前所发现的最重要的乳腺癌易感基因之一,它在DNA损伤修复,细胞周期调节,基因的转录激活,染色质稳定性,细胞增殖等方面都起着重要作用。该文着重介绍近几年来BRCA1基础研究方面的进展,并讨论BRCA1在肿瘤发生、发展过程的作用。为BRCA1在临床上的应用提供理论依据。  相似文献   

13.
Hereditary breast cancer: new genetic developments,new therapeutic avenues   总被引:1,自引:0,他引:1  
Six genes confer a high risk for developing breast cancer (BRCA1/2, TP53, PTEN, STK11, CDH1). Both BRCA1 and BRCA2 have DNA repair functions, and BRCA1/2 deficient tumors are now being targeted by poly(ADP-ribose) polymerase inhibitors. Other genes conferring an increased risk for breast cancer include ATM, CHEK2, PALB2, BRIP1 and genome-wide association studies have identified lower penetrance alleles including FGFR2, a minor allele of which is associated with breast cancer. We review recent findings related to the function of some of these genes, and discuss how they can be targeted by various drugs. Gaining deeper insights in breast cancer susceptibility will improve our ability to identify those families at increased risk and permit the development of new and more specific therapeutic approaches.  相似文献   

14.
熊鸣 《生命科学》2012,(10):1197-1201
BRCA1基因是目前发现的外显率最高的乳腺癌易感基因之,编码一个相对分子质量为220000的多功能核蛋白,作用于一系列维持基因组稳定性的细胞通路,包括DNA损伤修复、细胞周期检验点激活、蛋白泛素化、染色质重组,以及转录调控和凋亡等。BRCA1丢失将导致显著的遗传不稳定性和生长停滞。着重介绍近年来BRCA1基础研究方面的进展,并讨论BRCA1与乳腺癌的临床关联性。  相似文献   

15.
BackgroundCommon low-penetrance genetic variants have been consistently associated with colorectal cancer risk.AimTo determine if these genetic variants are associated also with adenoma susceptibility and may improve selection of patients with increased risk for advanced adenomas and/or multiplicity (≥ 3 adenomas).MethodsWe selected 1,326 patients with increased risk for advanced adenomas and/or multiplicity and 1,252 controls with normal colonoscopy from population-based colorectal cancer screening programs. We conducted a case-control association study analyzing 30 colorectal cancer susceptibility variants in order to investigate the contribution of these variants to the development of subsequent advanced neoplasia and/or multiplicity.ResultsWe found that 14 of the analyzed genetic variants showed a statistically significant association with advanced adenomas and/or multiplicity: the probability of developing these lesions increased with the number of risk alleles reaching a 2.3-fold risk increment in individuals with ≥ 17 risk alleles.ConclusionsNearly half of the genetic variants associated with colorectal cancer risk are also related to advanced adenoma and/or multiplicity predisposition. Assessing the number of risk alleles in individuals within colorectal cancer screening programs may help to identify better a subgroup with increased risk for advanced neoplasia and/or multiplicity in the general population.  相似文献   

16.
Chromosomal mutagen sensitivity is a common feature of cells from patients with different kinds of cancer. A portion of breast cancer patients also shows an elevated sensitivity to the induction of chromosome damage in cells exposed to ionizing radiation or chemical mutagens. Segregation analysis in families of patients with breast cancer indicated heritability of mutagen sensitivity. It has therefore been suggested that mutations in low-penetrance genes which are possibly involved in DNA repair predispose a substantial portion of breast cancer patients. Chromosomal mutagen sensitivity has been determined with the G2 chromosome aberration test and the G(0) micronucleus test (MNT). However, there seems to be no clear correlation between the results from the two tests, indicating that the inherited defect leading to enhanced G(0) sensitivity is different from that causing G2 sensitivity. Less than 5% of breast cancer patients have a familial form of the disease due to inherited mutations in the breast cancer susceptibility genes BRCA1 or BRCA2. Heterozygous mutations in BRCA1 or BRCA2 in lymphocytes from women with familial breast cancer are also associated with mutagen sensitivity. Differentiation between mutation carriers and controls seems to be much better with the MNT than with the G2 assay. Mutagen sensitivity was detected with the MNT not only after irradiation but also after treatment with chemical mutagens including various cytostatics. The enhanced formation of micronuclei after exposure of lymphocytes to these substances suggests that different DNA repair pathways are affected by a BRCA1 mutation in accordance with the proposed central role of BRCA1 in maintaining genomic integrity. Mutations in BRCA1 and BRCA2 seem to predispose cells to an increased risk of mutagenesis and transformation after exposure to radiation or cytostatics. This raises a question about potentially increased risks by mammography and cancer therapy in women carrying a mutation in one of the BRCA genes. Lymphoblastoid cell lines (LCLs) from breast cancer patients have been used to study the mechanisms and genetic changes associated with tumorigenesis. With respect to mutagen sensitivity, conflicting results have been reported. In particular enhanced induction of micronuclei does not seem to be a general feature of LCLs with a BRCA1 mutation in contrast to lymphocytes with the same mutation. Therefore, LCLs are of limited utility for studying the mechanisms underlying chromosomal mutagen sensitivity.  相似文献   

17.
Breast cancer is a complex disease, showing a strong genetic component. Several human susceptibility genes have been identified, especially in the last few months. Most of these genes are low-penetrance genes and it is clear that numerous other susceptibility genes remain to be identified. The function of several susceptibility genes indicates that one critical biological pathway is the DNA damage response. However, other pathways certainly play a significant role in breast cancer susceptibility. Rodent models of breast cancer are useful models in two respects. They can help identify new mammary susceptibility genes by taking advantage of the very divergent susceptibilities exhibited by different mouse or rat strains and carrying out relevant genetic analyses. They also provide investigators with experimental systems that can help decipher the mechanism(s) of resistance to mammary cancer. Recent genetic and biological results obtained with mouse and especially with rat strains indicate that (1) numerous quantitative trait loci control mammary cancer susceptibility or resistance, with distinct loci acting in different strains, and (2) distinct resistance mechanisms operate in different rat resistant strains, precocious mammary differentiation being one of these mechanisms.  相似文献   

18.
Breast cancer is the most common malignancy among women. Chilean studies reveal that this cancer presents the third highest mortality rate. A family history of breast cancer is one of the major risk factors for the development of this disease. BRCA1 and BRCA2 are the two main hereditary breast cancer susceptibility genes, and mutations in these genes are related to inherited breast cancer. In specific populations only some mutations have been found to be associated with susceptibility. The purpose of this study was to establish the frequency of 5382insC (BRCA1) and 6174delT (BRCA2) germline mutations in 382 healthy Chilean women with at least two relatives affected with breast cancer and in probands and their relatives from 8 high risk families for breast cancer, using mismatch PCR assay. The results obtained showed that 5382insC and 6174delT mutations were not found in either of the groups studied. The ethnic origin of the contemporary Chilean population and the data reported in the literature suggest that these mutations may be absent or have a very low frequency in this population.. This genetic study is part of a breast cancer screening program that also includes annual mammography and clinical breast examination over a five-year period. Strategies to reduce morbidity and mortality associated with breast cancer lie in early detection in women with genetic risk.  相似文献   

19.
20.
Individuals with mutations in breast cancer susceptibility genes BRCA1 and BRCA2 have up to an 80% risk of developing breast cancer by the age of 70. Sequencing-based genetic tests are now available to identify mutation carriers in an effort to reduce mortality through prevention and early diagnosis. However, lack of a suitable functional assay hinders the risk assessment of more than 1,900 BRCA1 and BRCA2 variants in the Breast Cancer Information Core database that do not clearly disrupt the gene product. We have established a simple, versatile and reliable assay to test for the functional significance of mutations in BRCA2 using mouse embryonic stem cells (ES cells) and bacterial artificial chromosomes and have used it to classify 17 sequence variants. The assay is based on the ability of human BRCA2 to complement the loss of endogenous Brca2 in mouse ES cells. This technique may also serve as a paradigm for functional analysis of mutations found in other genes linked to human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号