首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity of proline dehydrogenase and pyrroline-5-carboxylate reductase was greatest after 5 and 7 days germination in green and etiolated cotyledons respectively of pumpkin (Cucurbita moschata Poir. cv. Dickinson Field). The ratio of pyrroline-5-carboxylate reductase to proline dehydrogenase activity was constant throughout germination. Both enzymes were purified 30-fold but the ratio pyrroline-5-carboxylate reductase—proline dehydrogenase activity was constant throughout purification. However, this ratio decreased with storage, especially in purified preparations. Both enzymes were stable at high temperature and the ratio pyrroline-5-carboxylate reductase—proline dehydrogenase remained unchanged on heating. Proline dehydrogenase and pyrroline-5-carboxylate reductase were inhibited by sodium bisulfite and cysteine. ATP, ADP and NADP caused inhibition of both enzymes. Proline dehydrogenase utilized NAD but not NADP. Pyrroline-5-carboxylate reductase had a 2.5-fold greater activity with NADH than NADPH. Most of the data presented suggest that proline dehydrogenase and pyrroline-5-carboxylate reductase activities occur on the same protein molecule.  相似文献   

2.
Based on localization and high activities of pyrroline-5-carboxylate reductase and proline dehydrogenase activities in soybean nodules, we previously suggested two major roles for pyrroline-5-carboxylate reductase in addition to the production of the considerable quantity of proline needed for biosynthesis; namely, transfer of energy to the location of biological N2 fixation, and production of NADP+ to drive the pentose phosphate pathway. The latter produces ribose-5-phosphate which can be used in de novo purine synthesis required for synthesis of ureides, the major form in which biologically fixed N2 is transported from soybean root nodules to the plant shoot. In this paper, we report rapid induction (in soybean nodules) and exceptionally high activities (in nodules of eight species of N2-fixing plants) of pentose phosphate pathway and pyrroline-5-carboxylate reductase. There was a marked increase in proline dehydrogenase activity during soybean (Glycine max) ontogeny. The magnitude of proline dehydrogenase activity in bacteroids of soybean nodules was sufficiently high during most of the time course to supply a significant fraction of the energy requirement for N2 fixation. Proline dehydrogenase activity in bacteroids from nodules of other species was also high. These observations support the above hypothesis. However, comparison of pentose phosphate pathway and pyrroline-5-carboxylate reductase activities of ureide versus amide-exporting nodules offers no support. The hypothesis predicts that pyrroline-5-carboxylate and pentose phosphate pathway activities should be higher in ureide-exporting nodules than in amide-exporting nodules. This predicted distinction was not observed in the results of in vitro assays of these activities.  相似文献   

3.
Enzymes of proline biosynthesis and proline degradation which act on the same compound, delta 1-pyrroline-5-carboxylate, are physically separated in yeast cells. The enzyme responsible for the final step in proline biosynthesis, pyrroline-5-carboxylate reductase, converts pyrroline-5-carboxylate to proline and is located in the cytoplasm. The last enzyme in the proline degradative pathway, pyrroline-5-carboxylate dehydrogenase, converts pyrroline-5-carboxylate to glutamate and is found in the particulate fraction of the cell, presumably in the mitochondrion. By subcellular compartmentation, yeast cells avoid futile cycling between proline and pyrroline-5-carboxylate.  相似文献   

4.
In this paper we report the purification of a protein which is able to catalyze both the proline oxidase and the pyrroline-5-carboxylic acid dehydrogenase activities necessary for the oxidation of proline to glutamic acid. The purification involves the preparation of a crude membrane pellet, detergent solubilization, ammonium sulfate fractionation, and DEAE-chromatography. We are able to obtain an essentially pure preparation (greater than 95% pure) after only a 52-fold purification, demonstrating that the protein is a major protein in cells fully induced for proline utilization. Both proline oxidase and pyrroline-5-carboxylic acid dehydrogenase activities co-purity throughout our purification. Velocity sedimentation of the purified protein demonstrates that both proline oxidase and pyrroline-5-carboxylic acid dehydrogenase activities co-sediment. Early in the purification procedure we are able to detect two species of protein which have both proline oxidase and pyrroline-5-carboxylic acid dehydrogenase activities. Our procedure purifies only the larger molecular weight species. The purified protein is a dimer composed of identical 132,000-dalton subunits. Analysis of mutants defective for proline utilization demonstrate that the bifunctional enzyme is the putA gene product.  相似文献   

5.
L-Proline is oxidized to pyrroline-5-carboxylic acid in intact plant mitochondria by a proline dehydrogenase (EC 1.4.3) that is bound to the matrix side of the inner mitochondrial membrane (TE Elthon, CR Stewart [1981] Plant Physiol 67: 780-784). This investigation reports the first solubilization of the L-proline dehydrogenase (PDH) from plant mitochondria. The supernatant from NP-40-treated etiolated shoot mitochondria of maize, Zea mays L., reduced iodonitrotetrazolium violet in a proline dependent manner. The pH optimum for this activity was 8. The apparent Km for proline was 6.6 millimolar. When supplied with proline, this solubilized PDH activity also synthesized pyrroline-5-carboxylic acid. The PDH activity was inhibited in vitro by 300 millimolar potassium chloride but not by 300 millimolar potassium acetate. The PDH activity had a molecular mass that was greater than 150 kilodaltons. Mitochondria were prepared from etiolated shoots grown in 100% water-saturated vermiculite (control) and 16% water-saturated vermiculite (stress). The specific activity of solubilized PDH from the stress treatment was 11% of the same activity from the control treatment. Oxygen uptake in the presence of proline and ADP (state 3 proline oxidation) by mitochondria from the stress treatment was 25% of the same rate by mitochondria from the control treatment. Mitochondria were also prepared 16 hours after rewatering the seedlings growing in the stress treatment. Both the solubilized PDH specific activity and state 3 proline oxidation returned to the control levels. The specific activities of the NAD+-dependent pyrroline-5-carboxylic acid dehydrogenase and cytochrome c oxidase in the solubilized preparations were unaffected by these stress and recovery treatments. Oxygen uptake rates by intact mitochondria in the presence of ADP and NADH, succinate or malate-pyruvate were also unaffected by these treatments.  相似文献   

6.
Characteristics of pyrroline-5-carboxylate reductase (P5CR) from Bradyrhizobium japonicum bacteroids and cultured rhizobia were compared with those of the enzyme in soybean nodule host cytosol. Reductase from host cytosol differed from that in bacteroids in: (a) the effect of pH on enzymic activity, (b) the capacity to catalyze both reduction of pyrroline-5-carboxylic acid and NAD+-dependent proline oxidation, (c) apparent affinities for pyrroline-5-carboxylic acid, and (d) sensitivities to inhibition by NADP+ and proline. The K1 for proline inhibition of P5CR in bacteroid cytosol was 1.8 millimolar. The properties of P5CR in B. japonicum and bacteroid cytosol were similar. The specific activities of P5CR in the cytosolic fractions of the nodule host and the bacteroid compartment were also comparable.  相似文献   

7.
The levels of 11 enzymes, most of them involved in the metabolism of ornithine, were measured in whole upper intestine, or in duodenum, small intestine and colon of adult rats. The developmental formations in small intestine of arginase, ornithine aminotransferase, and ornithine transcarbamylase were compared with those in liver. Changes with age (late gestation of adult) of the intestinal activities of pyrroline-5-carboxylate reductase, proline oxidase and glutamyl transpeptidase are also described. The results suggest that the proximal part of the intestine is well endowed with enzymes involved in the conversion of ornithine to proline as well as to citrulline. Fetal intestine is rich in proline oxidase and pyrroline-5-carboxylate reductase. The peak levels of ornithine aminotransferase found in intestine in the first 3 postnatal weeks were higher than seen in any other rat tissue. Some of the properties of arginase, ornithine aminotransferase and pyrroline-5-carboxylate reductase in small intestine were compared with those in liver. Isozymes of arginase in small intestine differed from those in liver; the kinetic properties of ornithine aminotransferase were similar in the two tissues. In intestine of 14-day-old rats, the ornithine aminotransferase reaction was reversible, forming ornithine from pyrroline-5-carboxylate. The intestinal pyrroline-5-carboxylate reductase was cold-labile as was the hepatic enzyme in rat.  相似文献   

8.
The levels of 11 enzymes, most of them involved in the metabolism of orithine, were measured in whole upper intestine, or in duodenum, small intestine and colon of adult rats. The developmental formations in small intestine of arginase, orithine aminotransferase, and orithine transcarbamylase were compared with those in liver. Changes with age (late gestation to adult) of the intestinal activities of pyrroline-5-carboxylate reductase, proline oxidase and glutamyl transpeptidase are also described.The results suggests that the proximal part of the intestine is well endowed with enzymes involved in the conversion of ornithine to proline as well as to citrulline. Fetal intestine is rich in proline oxidase and pyrroline-5-carboxylate reductase. The peak levels of ornithine aminotraferase found in intestine in the first 3 postnatal weeks were higher than seen in any other rat tissue.Some of the properties of arginase, ornithine aminotransferase and pyrroline-5-carboxylate reductase in small intestine were compared with those in liver. Isozymes of arginase in small intestine differed from those in liver; the kinetic properties of ornithine aminotransferase were similar in the two tissues. In intestine of 14-day-old rats, the orithine aminotransferase reaction was reversible, forming ornithine from pyrroline-5-carboxylate. The intestinal pyrroline-5-carboxylate reductase was cold-labile as was the hepatic enzyme in rat.  相似文献   

9.
Free proline content in Ragi (Eleusine coracana) leaves increased markedly (6 to 85 fold) as the degree of water stress, created by polyethylene gylcol treatment, was prolonged There was also a marginal increase in soluble proteins in the stressed leaves as compared to that in the controls. Water stress stimulated the activities of ornithine aminotransferase and pyrroline-5-carboxylate reductase, the enzymes of proline biosynthesis and markedly inhibited the enzymes involved in proline degradation viz., proline oxidase and pyrroline-5-carboxylate dehydrogenase. These results suggest that increase in free proline content of Ragi leaves could be due to enhanced activities of the enzymes synthesizing proline but more importantly due to severe inhibition of the enzymes degrading proline. These observations establish for the first time, the pathway of proline metabolism in plants by way of detection of the activities of all the enzymes involved and also highlight the role of these enzymes in proline accumulation during water stress.  相似文献   

10.
Pyrroline-5-carboxylate reductase catalyzes the final step in proline synthesis by NAD(P)H-dependent reduction of pyrroline-5-carboxylate. We have purified and characterized this enzyme from human erythrocytes. Purification to homogeneity (approximately 600,000-fold) was accomplished by sonication, ultracentrifugation, 2',5'-ADP-Sepharose affinity chromatography, and DEAE-Sephacel ion exchange chromatography. The enzyme runs as a single band of 30,000 Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Sizing chromatography under nondenaturating conditions demonstrates activity in the 300,000-350,000 Mr range, suggesting that the native enzyme exists as a 10- to 12-mer. The purified enzyme exhibits kinetic characteristics similar to those previously described for whole red cell homogenates. The Vmax is 10-fold higher and the Km for pyrroline-5-carboxylate is 7-fold higher with NADH versus NADPH as cofactor. The affinity for NADPH is 15-fold higher than that for NADH. Erythrocyte pyrroline-5-carboxylate reductase is competitively inhibited by NADP+. Unlike the enzyme from some other sources, erythrocyte pyrroline-5-carboxylate reductase is not inhibited by proline or ATP. Double label studies using [14C]pyrroline-5-carboxylate and [3H]exNADPH in the presence of both NADH and NADPH were performed to determine the preferred source of reducing equivalents. In the presence of physiologic concentrations of pyrroline-5-carboxylate and both pyridine nucleotides, all of the reducing equivalents came from NADPH. We suggest that, in some cell types including human erythrocytes, a physiologic function of pyrroline-5-carboxylate reductase is the generation of NADP+.  相似文献   

11.
Pyrroline-5-carboxylate reductase (P5CR) lies at the converging point of the glutamate and ornithine pathways and is the last and critical enzyme in proline biosynthesis. In the present study, a P5CR gene, named IbP5CR, was isolated from salt-tolerant sweetpotato line ND98. Expression of IbP5CR was up-regulated in sweetpotato under salt stress. The IbP5CR-overexpressing sweetpotato (cv. Kokei No. 14) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content and superoxide dismutase and photosynthetic activities were significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbP5CR up-regulated pyrroline-5-carboxylate synthase gene and down-regulated proline dehydrogenase and P5C dehydrogenase genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that overexpression of IbP5CR increases proline accumulation, which enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system. This study indicates that IbP5CR gene has the potential to be used for improving salt tolerance of plants.  相似文献   

12.
Tobacco (Nicotiana tabacum L. var Wisconsin 38) cells that are adapted to 428 millimolar NaCl accumulate proline mainly due to increased synthesis from glutamate. These cells were used to evaluate the possible role of Δ1-pyrroline-5-carboxylate reductase in the regulation of proline biosynthesis. No increase in the specific activity of Δ1-pyrroline-5-carboxylate reductase in crude extracts throughout the growth cycle was observed in NaCl-adapted cells compared to unadapted cells. The enzyme from both cell types was purified extensively. On the basis of affinity for the substrates NADPH, NADH, and Δ1-pyrroline-5-carboxylate, pH profiles, chromatographic behavior during purification, and electrophoretic mobility of the native enzyme, the activities of the enzyme from the two sources were similar. These data suggest that the NaCl-dependent regulation of proline synthesis in tobacco cells does not involve induction of pyrroline-5-carboxylate isozymes or changes in its kinetic properties.  相似文献   

13.
14.
Metabolism of arginine in lactating rat mammary gland.   总被引:3,自引:1,他引:2       下载免费PDF全文
Significant activities of the four enzymes needed to convert arginine into proline and glutamate (arginase, ornithine aminotransferase, pyrroline-5-carboxylate reductase and pyrroline-5-carboxylate dehydrogenase) develop co-ordinately in lactating rat mammary glands in proportion to the increased production of milk. No enzymes were detected to carry out the reactions of proline oxidation or reduction of glutamate to pyrroline-5-carboxylate. Minces of the gland converted ornithine into proline and into glutamate plus glutamine. These conversions increased during the cycle of lactation in proportion to the increased milk production and to the content of the necessary enzymes. The minced gland did not convert labelled ornithine into citrulline, confirming the absence from the gland of a functioning urea cycle, and did not convert labelled proline or glutamate into ornithine. A metabolic flow of labelled arginine to proline and glutamate in mammary gland was confirmed in intact animals with experiments during which the specific radioactivity of proline in plasma remained below that of the proline being formed from labelled arginine within the gland. It was concluded that arginase in this tissue had a metabolic role in the biosynthesis of extra proline and glutamate needed for synthesis of milk proteins.  相似文献   

15.
Five popularly grown mulberry cultivars (K-2, MR-2, TR-10, BC2-59 and S-13) were subjected to drought stress by withholding irrigation, to obtain leaf water potentials (Ψw) ranging from −0.75, −1.50 and −2.25 MPa. Accumulation of proline, glycine betaine and abscisic acid (ABA) were quantified in control and water stressed mulberry leaves. The activities of enzymes involved in proline accumulation including glutamate dehydrogenase (EC1.4.1.2-4), pyrroline-5-carboxylate synthetase (EC 1.2.1.41), pyrroline-5-carboxylate reductase (EC1.5.1.2), ornithine transaminase (EC 2.6.1.13) were significantly enhanced in the leaves of all the cultivars with decreasing leaf water potentials, while the activities of proline dehydrogenase (EC 1.5.1.2) were reduced with progressive increase in water stress. Accumulation of proline, glycine betaine and abscisic acid was relatively higher in S-13 and BC2-59 compared to K-2, MR-2 and TR-10 under water deficit conditions. Our results demonstrate that S-13 and BC2-59 have superior osmoprotectant mechanisms under water-limited growth regimes.  相似文献   

16.
The habituated callus is a vitrified tissue which has two main biochemical characteristics both leading to production of toxic forms of oxygen: first the blockage of the porphyrin pathway and a lack of H2O2 detoxifying enzymes (catalase and peroxidases); secondly a deviation of the nitrogen metabolism induced by NH3 accumulation. Ammonia detoxification is ensured by increased glutamate dehydrogenase activity and accumulation of both proline and polyamines. A putative linkage between proline synthesis and the HMP pathway, as proposed for animal proliferating tissues (Phang 1985), might explain a high purine biosynthesis and cytokinin autonomy.Abbreviations FFA free fatty acids - 6PG-DH 6-phosphogluconate dehydrogenase - G6P-DH glucose-6-phosphate dehydrogenase - GLU glutamate - GDH glutamate dehydrogenase - GR glutathion reductase - H habituated callus - HMP hexoses-monophosphate - IAA indolyl-acetic acid - LOX lipoxygenase - MDA malondialdehyde - N normal callus - OAT ornithine aminotransferase - ORN ornithine - PAs polyamines - P5C pyrroline-5-carboxylate - P5CR pyrroline-5-carboxylate reductase - PP-ribose-P phosphoribosyl pyrophosphate - SOD superoxide dismutase  相似文献   

17.
Autosomal-recessive cutis laxa type 2 (ARCL2) is a multisystem disorder characterized by the appearance of premature aging, wrinkled and lax skin, joint laxity, and a general developmental delay. Cutis laxa includes a family of clinically overlapping conditions with confusing nomenclature, generally requiring molecular analyses for definitive diagnosis. Six genes are currently known to mutate to yield one of these related conditions. We ascertained a cohort of typical ARCL2 patients from a subpopulation isolate within eastern Canada. Homozygosity mapping with high-density SNP genotyping excluded all six known genes, and instead identified a single homozygous region near the telomere of chromosome 17, shared identically by state by all genotyped affected individuals from the families. A putative pathogenic variant was identified by direct DNA sequencing of genes within the region. The single nucleotide change leads to a missense mutation adjacent to a splice junction in the gene encoding pyrroline-5-carboxylate reductase 1 (PYCR1). Bioinformatic analysis predicted a pathogenic effect of the variant on splice donor site function. Skipping of the associated exon was confirmed in RNA from blood lymphocytes of affected homozygotes and heterozygous mutation carriers. Exon skipping leads to deletion of the reductase functional domain-coding region and an obligatory downstream frameshift. PYCR1 plays a critical role in proline biosynthesis. Pathogenicity of the genetic variant in PYCR1 is likely, given that a similar clinical phenotype has been documented for mutation carriers of another proline biosynthetic enzyme, pyrroline-5-carboxylate synthase. Our results support a significant role for proline in normal development.  相似文献   

18.
Mitochondrial NADH dehydrogenase has been purified from rat liver mitochondria by protamine sulfate fractionation and DEAE-Sephadex chromatography. The enzyme is water-soluble and its molecular weight has been estimated at 400 +/- 50 kilodaltons. NADH-ferricyanide reductase and NADH cytochrome c reductase activities have been studied and the kinetic parameters have been determined. Both substrates, NADH and the electron acceptor (ferricyanide or cytochrome c) have an inhibitor effect on the reductase activities and the kinetic mechanism of the enzyme is ping-pong bi-bi.  相似文献   

19.
A ferric leghemoglobin reductase from the cytosol of soybean (Glycine max) root nodules was purified to homogeneity and partially characterized. The enzyme is a flavoprotein with flavin adenine dinucleotide as the prosthetic group and consists of two identical subunits, each having a molecular mass of 54 kilodaltons. The pure enzyme shows a high activity for ferric leghemoglobin reduction with NADH as the reductant in the absence of any exogenous mediators. The enzyme also exhibits NADH-dependent 2,6-dichloroindophenol reductase activity. A sequence of the first 50 N-terminal amino acids of the purified protein was obtained. Comparisons with known protein sequences have shown that the sequence of the ferric leghemoglobin reductase is highly related to those of the flavin-nucleotide disulfide oxido-reductases, especially dihydrolipoamide dehydrogenase of the pyruvate dehydrogenase complex.  相似文献   

20.
A Herzfeld  S M Raper 《Enzyme》1976,21(5):471-480
The activities of 12 enzymes, many related to ornithine metabolism, were measured in rat submaxillary gland, submaxillary gland tumors and pancreas. In submaxillary gland, the activities of arginase, ornithine aminotransferase, pyrroline-5-carboxylate reductase and glutamine synthetase were high, but no ornithine transcarbamylase or proline oxidase could be detected. In the fetal submaxillary gland, arginase was at almost adult levels while ornithine aminotransferase reached 50% of its adult value postnatally. Submaxillary tumors deviated from their cognate tissue by lower levels of amino acid metabolizing enzymes and by high concentrations of thymidine kinase. In pancreas, none of the pyrroline-5-carboxylate metabolizing enzymes were as high as in either liver or submaxillary gland. The outstanding activities were those of gamma-glutamyl transpeptidase and glutamate dehydrogenase. Although arginase activities in submaxillary gland and pancreas were quantitatively similar, they differed qualitatively: submaxillary gland contained the same variant as liver while the pancreatic isozymes resembled those of other nonhepatic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号