首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Distinct spatial approximations between residues within the secretin pharmacophore and its receptor can provide important constraints for modeling this agonist-receptor complex. We previously used a series of probes incorporating photolabile residues into positions 6, 12, 13, 14, 18, 22, and 26 of the 27-residue peptide and demonstrated that each covalently labeled a site within the receptor amino terminus. Although supporting a critical role of this domain for ligand binding, it does not explain the molecular mechanism of receptor activation. Here, we developed probes having photolabile residues at the amino terminus of secretin to explore possible approximations with a different receptor domain. The first probe incorporated a photolabile p-benzoyl-l-phenylalanine into the position of His(1) of rat secretin ([Bpa(1),Tyr(10)]secretin-27). Because His(1) is critical for function, we also positioned a photolabile Bpa as an amino-terminal extension, in positions -1 (rat [Bpa(-1),Tyr(10)]secretin-27) and -2 (rat [Bpa(-2),Gly(-1),Tyr(10)]secretin-27). Each analog was shown to be a full agonist, stimulating cAMP accumulation in receptor-bearing Chinese hamster ovary-SecR cells in a concentration-dependent manner, with the position -2 probe being most potent. They bound specifically and saturably, although the position 1 analog had lowest affinity, and all were able to label the receptor efficiently. Sequential specific cleavage, purification, and sequencing demonstrated that the sites of covalent attachment for each probe were high within the sixth transmembrane segment. This suggests that secretin binding may exert tension between the receptor amino terminus and the transmembrane domain to elicit a conformational change effecting receptor activation.  相似文献   

2.
The amino terminus of the secretin receptor (SecR) is known to be critical for natural agonist action, although the role it plays is still unclear. We have demonstrated that photolabile residues within both the amino-terminal (position 6) and carboxyl-terminal (positions 22 and 26) halves of secretin each covalently label receptor amino-terminal tail residues [Dong et al., J Biol Chem, 274:19161-19167 (1999), 274:903-909 (1999), and 275:26032-26039 (2000)]. Here, we extend this series of studies with an additional probe having its site of covalent attachment in a distinct region of the peptide, between amino- and carboxyl-terminal helical domains. This probe incorporated a photolabile (epsilon-p-benzoylbenzoyl)lysine in position 18 and a site for oxidative radioiodination [(tyrosine(10),(benzoyl-benzoyl)lysine(18))rat secretin-27]. This analog represented a full agonist, stimulating cAMP accumulation in Chinese hamster ovary-SecR cells in a concentration-dependent manner. It bound to the SecR specifically and saturably, and was able to efficiently label that molecule within its amino terminus. Sequential specific cleavage, purification, and sequencing demonstrated that this probe labeled receptor residue arginine(14), in the same subdomain as that labeled by previous probes. Consistent with the importance of this residue, alanine replacement mutagenesis (R14A) resulted in substantial reductions in the potency (127-fold) and binding affinity (400-fold) of secretin relative to its action at the wild-type receptor. We have been able to accommodate all four extant pairs of residue-residue approximations between divergent regions of the secretin pharmacophore and the first forty residues of the SecR into a credible molecular model of this interaction. Additional experimentally derived constraints will be necessary to determine the spatial positioning of this complex with the remainder of the SecR.  相似文献   

3.
The carboxyl-terminal domains of secretin family peptides have been shown to contain key determinants for high affinity binding to their receptors. In this work, we have examined the interaction between carboxyl-terminal residues within secretin and the prototypic secretin receptor. We previously utilized photoaffinity labeling to demonstrate spatial approximation between secretin residue 22 and the receptor domain that includes the first 30 residues of the amino terminus (Dong, M., Wang, Y., Pinon, D. I., Hadac, E. M., and Miller, L. J. (1999) J. Biol. Chem. 274, 903-909). Here, we further refined the site of labeling with the p-benzoyl-phenylalanine (Bpa(22)) probe to receptor residue Leu(17) using progressive cleavage of wild type and mutant secretin receptors (V13M and V16M) and sequence analysis. We also developed a new probe incorporating a photolabile Bpa at position 26 of secretin, closer to its carboxyl terminus. This analogue was also a potent agonist (EC(50) = 72 +/- 6 pm) and bound to the secretin receptor specifically and with high affinity (K(i) = 10.3 +/- 2.4 nm). It covalently labeled the secretin receptor at a single site saturably and specifically. This was localized to the segment between residues Gly(34) and Ala(41) using chemical and enzymatic cleavage of labeled wild type and A41M mutant receptor constructs and immunoprecipitation of epitope-tagged receptor fragments. Radiochemical sequencing identified the site of covalent attachment as residue Leu(36). These new insights, along with our recent report of contact between residue 6 within the amino-terminal half of secretin and this same amino-terminal region of this receptor (Dong, M., Wang, Y., Hadac, E. M., Pinon, D. I., Holicky, E. L., and Miller, L. J. (1999) J. Biol. Chem. 274, 19161-19167), support a key role for this region, making the molecular details of this interaction of major interest.  相似文献   

4.
Understanding of the conformational changes in G protein-coupled receptors associated with activation and inactivation is of great interest. We previously used photoaffinity labeling to elucidate spatial approximations between photolabile residues situated throughout the pharmacophore of secretin agonist probes and this receptor. The aim of the current work was to develop analogous photolabile secretin antagonist probes and to explore their spatial approximations. The most potent secretin antagonist reported is a pseudopeptide ([psi(4, 5)]secretin) in which the peptide bond between residues 4 and 5 was replaced by a psi(CH(2)-NH) peptide bond isostere. We have developed a series of [psi(4, 5)]secretin analogs incorporating photolabile benzoyl phenylalanine residues in positions 6, 22, and 26. Each bound to the secretin receptor saturably and specifically, with affinity similar to their parental peptide. At concentrations with no measurable agonist activity, each probe covalently labeled the secretin receptor. Peptide mapping using proteolytic cleavage, immunoprecipitation, and radiochemical sequencing identified that each of these three probes labeled the amino terminus of the secretin receptor. Whereas the position 22 probe labeled the same residue as its analogous agonist probe and the position 6 probe labeled a residue within two residues of that labeled by its analogous agonist probe, the position 26 probe labeled a site 16 residues away from that labeled by its analogous agonist probe. Thus, whereas structurally related agonist and antagonist probes dock in the same general region of this receptor, conformational differences in active and inactive states result in substantial differences in spatial approximation at the carboxyl-terminal end of secretin analogs.  相似文献   

5.
The calcitonin receptor is a member of the class B family of G protein-coupled receptors, closely related to secretin and parathyroid hormone receptors. Although mechanisms of ligand binding have been directly explored for those receptors, current knowledge of the molecular basis of calcitonin binding to its receptor is based only on receptor mutagenesis. In this work we have utilized the more direct approach of photoaffinity labeling to explore spatial approximations between distinct residues within calcitonin and its receptor. For this we have developed two human calcitonin analogues incorporating a photolabile p-benzoyl-l-phenylalanine residue in the mid-region and carboxyl-terminal half of the peptide in positions 16 and 26, respectively. Both probes specifically bound to the human calcitonin receptor with high affinity and were potent stimulants of cAMP accumulation in calcitonin receptor-bearing human embryonic kidney 293 cells. They covalently labeled the calcitonin receptor in a saturable and specific manner. Further purification, deglycosylation, specific chemical and enzymatic cleavage, and sequencing of labeled wild type and mutant calcitonin receptors identified the sites of labeling for the position 16 and 26 probes as receptor residues Phe137 and Thr30, respectively. Both were within the extracellular amino terminus of the calcitonin receptor, with the former adjacent to the first transmembrane segment and the latter within the distal amino-terminal tail of the receptor. These data are consistent with affinity labeling of other members of the class B G protein-coupled receptors using analogous probes and may suggest a common ligand binding mechanism for this family.  相似文献   

6.
Dong M  Te JA  Xu X  Wang J  Pinon DI  Storjohann L  Bordner AJ  Miller LJ 《Biochemistry》2011,50(38):8181-8192
The natural ligands for family B G protein-coupled receptors are moderate-length linear peptides having diffuse pharmacophores. The amino-terminal regions of these ligands are critical for biological activity, with their amino-terminal truncation leading to production of orthosteric antagonists. The carboxyl-terminal regions of these peptides are thought to occupy a ligand-binding cleft within the disulfide-bonded amino-terminal domains of these receptors, with the peptides in amphipathic helical conformations. In this work, we have characterized the binding and activity of a series of 11 truncated and lactam-constrained secretin(5-27) analogues at the prototypic member of this family, the secretin receptor. One peptide in this series with lactam connecting residues 16 and 20 [c[E(16),K(20)][Y(10)]sec(5-27)] improved the binding affinity of its unconstrained parental peptide 22-fold while retaining the absence of endogenous biological activity and competitive antagonist characteristics. Homology modeling with molecular mechanics and molecular dynamics simulations established that this constrained peptide occupies the ligand-binding cleft in an orientation similar to that of natural full-length secretin and provided insights into why this peptide was more effective than other truncated conformationally constrained peptides in the series. This lactam bridge is believed to stabilize an extended α-helical conformation of this peptide while in solution and not to interfere with critical residue-residue approximations while docked to the receptor.  相似文献   

7.
Calcitonins are 32-amino acid peptide hormones with both peripheral and central actions mediated via specific cell surface receptors, which belong to the class II subfamily of G protein-coupled receptors. Understanding receptor function, particularly in terms of ligand recognition by calcitonin receptors, may aid in the rational design of calcitonin analogs with increased potency and improved selectivity. To directly identify sites of proximity between calcitonin and its receptor, we carried out photoaffinity labeling studies followed by protein digestion and mapping of the radiolabeled photoconjugated receptor. A fully active salmon calcitonin analog [Arg(11,18),Bpa19]sCT, incorporating a photolabile p-benzoyl-L-phenylalanine into position 19 of the ligand, has been used to demonstrate spatial proximity between residue 19 of the peptide and the amino-terminal extracellular domain of the receptor. Cyanogen bromide cleavage together with endoproteinase Asp-N digestion indicated that binding was predominantly to the region delimited by receptor residues Cys134 and Met187. Binding to this fragment was supported further by cyanogen bromide-digestion of receptors that were mutated to remove the predicted cleavage site at Met133 (M133A, M133L). Binding within the 54-amino acid fragment was refined further by digestion with endoproteinase Lys-C to the 8-amino acid region corresponding to Cys134-Lys141. These results provide the first direct demonstration of a contact domain between salmon calcitonin and its receptor and will contribute toward modeling of the calcitonin-receptor interface.  相似文献   

8.
A novel method of the in vitro incorporation of two nonnatural amino acids into proteins through extension of the genetic code was developed. The streptavidin mRNA containing AGGU and CGGG, and chemically aminoacylated tRNA(ACCU) and tRNA(CCCG) were prepared, then they were added into E. coli in vitro protein synthesizing system. As a result, two nonnatural amino acids were successfully incorporated into desired sites of streptavidin.  相似文献   

9.
Full structural characterization of G protein-coupled receptors has been limited to rhodopsin, with its uniquely stable structure and ability to be crystallized. For other members of this important superfamily, direct structural insights have been limited to NMR structures of soluble domains. Two members of the Class II family have recently had the structures of their isolated amino-terminal regions solved by NMR, yet it remains unclear how that domain is aligned with the heptahelical transmembrane bundle domain of those receptors. Indeed, three distinct orientations have been suggested for different members of this family. In the current work, we have utilized fluorescence resonance energy transfer to establish the distances between four residues distributed throughout fully biologically active, high affinity analogues of secretin and distinct residues in each of four extracellular regions of the intact secretin receptor. These 16 distance constraints were utilized along with nine photoaffinity labeling spatial approximation constraints to study the three proposed orientations of the peptide-binding amino terminus and helical bundle domains of this receptor. In the best model, the carboxyl terminus of secretin was found to bind in a groove above the beta-hairpin region of the receptor amino terminus, with its amino-terminal end adjacent to the third extracellular loop and top of transmembrane segment VI. This refined model of the intact receptor was also fully consistent with the spatial approximation of the Trp(48)-Asp(49)-Asn(50) endogenous agonist segment with the third extracellular loop region that it has been shown to photolabel. This provides strong evidence for the orientation of peptide-binding and signaling domains of a prototypic Class II G protein-coupled receptor.  相似文献   

10.
Escherichia coli TonB protein is an energy transducer, coupling cytoplasmic membrane energy to active transport of vitamin B12 and iron-siderophores across the outer membrane. TonB is anchored in the cytoplasmic membrane by its hydrophobic amino terminus, with the remainder occupying the periplasmic space. In this report we establish several functions for the hydrophobic amino terminus of TonB. A G-26-->D substitution in the amino terminus prevents export of TonB, suggesting that the amino terminus contains an export signal for proper localization of TonB within the cell envelope. Substitution of the first membrane-spanning domain of the cytoplasmic membrane protein TetA for the TonB amino terminus eliminates TonB activity without altering TonB export, suggesting that the amino terminus contains sequence-specific information. Detectable TonB cross-linking to ExbB is also prevented, suggesting that the two proteins interact primarily through their transmembrane domains. In vivo cleavage of the amino terminus of TonB carrying an engineered leader peptidase cleavage site eliminates (i) TonB activity, (ii) detectable interaction with a membrane fraction having a density intermediate to those of the cytoplasmic and outer membranes, and (iii) cross-linking to ExbB. In contrast, the amino terminus is not required for cross-linking to other proteins with which TonB can form complexes, including FepA. Additionally, although the amino terminus clearly is a membrane anchor, it is not the only means by which TonB associates with the cytoplasmic membrane. TonB lacking its amino-terminal membrane anchor still remains largely associated with the cytoplasmic membrane.  相似文献   

11.
12.
Addition of low concentrations of acetylcholine or carbamylcholine to solutions bathing a black lipid membrane into which electroplax acetylcholinesterase has been incorporated elicits a dramatic increase in the membrane conductance. This change is prevented or reversed by addition of neostigmine or atropine to the system. The magnitude of the conductance increase of the acetylcholinesterase-treated membrane is proportional to the fourth power of the carbamylcholine concentration and, at constant carbamylcholine concentration, to the fourth power of the enzyme concentration in the medium.  相似文献   

13.
Pseudomonas aeruginosa OprF forms 0.36-nS channels and, rarely, 2- to 5-nS channels in lipid bilayer membranes. We show that a protein comprising only the N-terminal 162-amino-acid domain of OprF formed the smaller, but not the larger, channels in lipid bilayers. Circular dichroism spectroscopy indicated that this protein folds into a beta-sheet-rich structure, and three-dimensional comparative modeling revealed that it shares significant structural similarity with the amino terminus of the orthologous protein Escherichia coli OmpA, which has been shown to form a beta-barrel. OprF and OmpA share only 15% identity in this domain, yet these results support the utility of modeling such widely divergent beta-barrel domains in three dimensions in order to reveal similarities not readily apparent through primary sequence comparisons. The model is used to further hypothesize why porin activity differs for the N-terminal domains of OprF and OmpA.  相似文献   

14.
Efforts to develop orally available gonadotropin-releasing hormone (GnRH) receptor antagonists have led to the discovery of several classes of potent nonpeptide antagonists. Here we investigated molecular interactions of three classes of nonpeptide antagonists with human, rat, and macaque GnRH receptors. Although all are high affinity ligands of the human receptor (K(i) <5 nm), these compounds show reduced affinity for the macaque receptor and bind only weakly (K(i) >1 microm) to the rat receptor. To identify residues responsible for this selectivity, a series of chimeric receptors and mutant receptors was constructed and evaluated for nonpeptide binding. Surprisingly, 4 key residues located in the amino terminus (Met-24) and extracellular loops II (Ser-203, Gln-208) and III (Leu-300) of the GnRH receptor appear to be primarily responsible for species-selective binding. Comparisons of reciprocal mutations suggest that these may not be direct contacts but rather may be involved in organizing extracellular portions of the receptor. These data are novel because most previous reports of residues involved in binding of nonpeptide ligands to peptide-activated G protein-coupled receptors, including the GnRH receptor as well as mono-amine receptors, have identified binding sites in the transmembrane regions.  相似文献   

15.
16.
Agouti protein and Agouti-related protein (Agrp) regulate pigmentation and body weight, respectively, by antagonizing melanocortin receptor signaling. A carboxyl-terminal fragment of Agouti protein, Ser73-Cys131, is sufficient for melanocortin receptor antagonism, but Western blot analysis of skin extracts reveals that the electrophoretic mobility of native Agouti protein corresponds to the mature full-length form, His23-Cys131. To investigate the potential role of the amino-terminal residues, we compared the function of full-length and carboxyl-terminal fragments of Agrp and Agouti protein in a sensitive bioassay based on pigment dispersion in Xenopus melanophores. We find that carboxyl-terminal Agouti protein, and all forms of Agrp tested, act solely by competitive antagonism of melanocortin action. However, full-length Agouti protein acts by an additional mechanism that is time- and temperature-dependent, depresses maximal levels of pigment dispersion, and is therefore likely to be mediated by receptor down-regulation. Apparent down-regulation is not observed for a mixture of amino-terminal and carboxyl-terminal fragments. We propose that the phenotypic effects of Agouti in vivo represent a bipartite mechanism: competitive antagonism of agonist binding by the carboxyl-terminal portion of Agouti protein and down-regulation of melanocortin receptor signaling by an unknown mechanism that requires residues in the amino terminus of the Agouti protein.  相似文献   

17.
P2X receptors are ion channels opened by extracellular ATP. The seven subunits currently known are encoded by different genes. It is thought that each subunit has two transmembrane domains, a large extracellular loop, and intracellular N- and C-termini, a topology which is fundamentally different from that of other ligand-gated channels such as nicotinic acetylcholine or glutamate receptors. We used the substituted cysteine accessibility method to identify parts of the molecule that form the ionic pore of the P2X2 receptor. Amino acids preceding and throughout the second hydrophobic domain (316-354) were mutated individually to cysteine, and the DNAs were expressed in HEK293 cells. For three of the 38 residues (I328C, N333C, T336C), currents evoked by ATP were inhibited by extracellular application of methanethiosulfonates of either charge (ethyltrimethylammonium, ethylsulfonate) suggesting that they lie in the outer vestibule of the pore. For two further substitutions (L338C, D349C) only the smaller ethylamine derivative inhibited the current. L338C was accessible to cysteine modification whether or not the channel was opened by ATP, but D349C was inhibited only when ATP was concurrently applied. The results indicate that part of the pore of the P2X receptor is formed by the second hydrophobic domain, and that L338 and D349 are on either side of the channel 'gate'.  相似文献   

18.
Improved and efficient techniques have led to an explosive growth in the application of site-directed mutagenesis to the study of enzymes. However, the limited availability of only those 20 amino acids that are translated by the genetic code has prevented the systematic variation of an amino acid's properties in order to define more precisely its role in the catalytic mechanism of an enzyme. An approach is being examined that combines the high specificity of site-directed mutagenesis with the flexibility of chemical modification to overcome these limitations. A set of reagents has been synthesized and reacted with a cysteine model to produce a series of amino acid structural analogs at appreciable rates and in good overall yields. The selective incorporation of these analogs in place of important functional amino acids in a protein will allow a more detailed examination of the role of that amino acid.  相似文献   

19.
20.
A DNA sequence consisting of 24 base pairs was inserted into the structural gene (lpp) coding for the major lipoprotein of the Escherichia coli outer membrane which was carried on a high-copy-number plasmid in which expression was regulated through a lac promoter-operator region. This modification resulted in the insertion of eight amino acid residues, Glu-Glu-Phe-Leu-Glu-Glu-Phe-Leu, between the glutamine residue at position 9 and the leucine residue at position 10 of the wild-type lipoprotein sequence. When production of the mutant lipoprotein was induced by a lac inducer, the cells became swollen, showed unusual morphology, and eventually lysed. When the membrane fraction was analyzed after the induction, the mutant lipoprotein was found to have been normally secreted across the cytoplasmic membrane and assembled in the outer membrane. This lipoprotein was modified with glycerol and palmitic acid and even formed the bound form, which was linked covalently to peptidoglycan. The major difference between the membrane-associated mutant lipoprotein and the wild-type lipoprotein was that the mutant lipoprotein became sensitive to trypsin treatment. These results indicate that the substantial alteration in mutant lipoprotein structure near the amino-terminal end does not interfere with modification of the amino-terminal cysteine residue or cleavage of the signal peptide by the prolipoprotein-specific signal peptidase. However, this mutant lipoprotein assembled in the outer membrane appears to have deleterious effects with respect to envelope structure and cellular morphology and viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号