首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delta8(14)-steroids in the bacterium Methylococcus capsulatus.   总被引:8,自引:0,他引:8       下载免费PDF全文
The 4,4-dimethyl and 4alpha-methyl sterols of the bacterium Methylococcus capsulatus were identified as 4,4-dimethyl- and 4alpha-methyl-5alpha-cholest-8(14)-en-3beta-ol and 4,4-dimethyl- and 4alpha-methyl-5alpha-cholesta-8(14),24-dien-3beta-ol. Sterol biosynthesis is blocked at the level of 4alpha-methyl delta8(14)-sterols.  相似文献   

2.
[3 alpha-3H]14 alpha-Methyl-5 alpha-cholest-7-en-3 beta-ol has been prepared by chemical synthesis. The metabolism of this compound has been studied in the 10,000 g supernatant fraction of liver homogenates of female rats. Efficient conversion to cholesterol was observed. Other labeled compounds recovered after incubation of [3 alpha-3H]14 alpha-methyl-5 alpha-cholest-7-en-3 beta-ol with the enzyme preparations include the unreacted substrate, 5 alpha-cholesta-7,14-dien-3 beta-ol, 5 alpha-cholesta-8,14-dien-3 beta-ol, cholesta-5,7-dien-3 beta-ol, 5 alpha-cholest-8(14)-en-3 beta-ol, 5 alpha-cholest-8-en-3 beta-ol, and 5 alpha-cholest-7-en-3 beta-ol. In addition, significant amounts of incubated radioactivity were recovered in steryl esters. The steroidal components of these esters were found to contain labeled 14 alpha-methyl-5 alpha-cholest-7-en-3 beta-ol, 5 alpha-cholesta-8,14-dien-3 beta-ol, 5 alpha-cholesta-7,14-dien-3 beta-ol, 5 alpha-cholest-8-en-3 beta-ol, 5 alpha-cholest-7-en-3 beta-ol, and cholesterol.  相似文献   

3.
From the aerial parts of Clerodendrum inerme, two new sterols (4alpha-methyl-24beta-ethyl-5alpha-cholesta-14, 25-dien-3beta-ol and 24beta-ethylcholesta-5, 9(11), 22E-trien-3beta-ol) and a new aliphatic ketone (11-pentacosanone) were isolated together with another known aliphatic ketone (6-nonacosanone) and a diterpene (clerodermic acid). The structure elucidations were based on analyses of physical and spectroscopic data.  相似文献   

4.
The possibility that the serum concentrations of various cholesterol precursors may reflect the activity of the hepatic HMG-CoA reductase was investigated in humans under different conditions. The serum levels of squalene, free and esterified lanosterol, (4 alpha, 4 beta, 14 alpha-trimethyl-5 alpha-cholest-8, 24-dien-3 beta-ol), two dimethylsterols (4 alpha, 4 beta-dimethyl-5 beta-cholest-8-en-3 beta-ol and 4 alpha, 4 beta-dimethyl-5 alpha-cholest-8, 24-dien-3 beta-ol), two methostenols (4 alpha-methyl-5 alpha-cholest-7-en-3 beta-ol and 4 alpha-methyl-5 alpha-cholest-8-en-3 beta-ol), two lathosterols (5 alpha-cholest-7-en-3 beta-ol and 5 alpha-cholest-8-en-3 beta-ol) and desmosterol (cholest-5, 24-dien-3 beta-ol) were measured in untreated patients (n = 7) and patients treated with cholestyramine (QuestranR, 8 g twice daily for 2-3 weeks, n = 5) or chenodeoxycholic acid (15 mg/kg body weight daily for 3-4 weeks, n = 8) prior to elective cholecystectomy. The activity of the hepatic microsomal HMG-CoA reductase was measured in liver biopsies taken in connection with the operation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. [2(-14)C]Mevalonic acid injected into the echinoderm Asterias rubens (Class Asteroidea) was effectively incorporated into the non-saponifiable lipid. 2. The most extensively labelled compounds were squalene and the 4,4-dimethyl sterols with much lower incorporations into the 4alpha-monomethyl and 4-demethyl sterol fractions. 3. Labelled compounds identified were squalene, lanosterol, 4,4-dimethyl-5alpha-cholesta-8,24-dien-3beta-ol and 4alpha-methyl-5alpha-cholest-7-en-3beta-ol; these are all intermediates in sterol biosynthesis. 4. The major sterol in A. rubens, 5alpha-cholest-7-en-3beta-ol, was also labelled showing that this echinoderm is capable of sterol biosynthesis de novo. 5. No evidence was obtained for the incorporation of [2(-14)C]mevalonic acid into the C28 and C29 components of the 4-demethyl sterols or 9beta,19-cyclopropane sterols found in A. rubens and it is assumed that these sterols are of dietary origin. 6. Another starfish Henricia sanguinolenta also incorporated [2(-14)C]mevalonic acid into squalene and lanosterol. 7. Various isolated tissues of A. rubens were all capable of incorporation of [2(-14)C]mevalonic acid into the nonsaponifiable lipid. With the body-wall and stomach tissues radioactivity accumulated in squalene and the 4,4-dimethyl sterols, but with the gonads and pyloric caecae there was a more efficient incorporation of radioactivity into the 4-demethyl sterols, principally 5alpha-cholest-7-en-3beta-ol.  相似文献   

6.
A reconstituted monooxygenase system containing a form of cytochrome P-450, termed P-450(14)DM, and NADPH-cytochrome P-450 reductase, both purified from yeast microsomes, catalyzed the conversion of lanosterol (4,4,14 alpha-trimethyl-5 alpha-cholesta-8,24-dien-3 beta-01) to a sterol metabolite in the presence of NADPH and molecular oxygen. This conversion did not occur anaerobically or when either P-450(14)DM, the reductase, or NADPH was omitted from the system. In both free and trimethylsilylated forms, this metabolite showed a relative retention time (relative to lanosterol) of 1.10 in gas chromatography on OV-17 columns. Comparison of its mass spectrum and retention time with those of lanosterol and 4,4-dimethylzymosterol (4,4-dimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol) indicated that the metabolite was 4,4-dimethyl-5 alpha-cholesta-8,14,24-trien-3 beta-ol. Upon aerobic incubation of microsomes from semianaerobically grown yeast cells in the presence of NADPH and cyanide, endogenous lanosterol was converted to 4,4-dimethylzymosterol. This metabolism was inhibited by CO, metyrapone, SKF-525A, and antibodies to P-450(14)DM. It is concluded that in yeast microsomes lanosterol is 14 alpha-demethylated by a P-450(14)DM-containing monooxygenase system to give rise to 4,4-dimethyl-5 alpha-cholesta-8,14,24-trien-3 beta-ol, which is then reduced to 4,4-dimethylzymosterol by an NADPH-linked reductase.  相似文献   

7.
An enzymatic assay for delta 8,14-sterol delta 14-reductase, an enzyme involved in sterol biosynthesis, has been developed for the first time in higher plants. The properties of the microsomal enzyme have been established with respect to cofactor requirements, kinetics and substrate specificity. This enzymatic double-bound reduction is thought to proceed through an electrophilic addition mechanism, involving a C14 putative carbonium ion high-energy intermediate. Using this in vitro assay, ammonium and iminium analogues of this cationic intermediate were shown to be potent inhibitors of the reduction reaction. Thus, compounds of the N-alkyl-8-aza-4 alpha,10-dimethyl-trans-decal-3 beta-ol series strongly inhibited sterol reductase (I50 = 0.07 - 4 microM) (I50/Km = 10(-4) - 10(-3), as did the antimycotic agent 15-azasterol (I50 = 0.03 microM); all of these compounds act as reaction-intermediate analogues of the proposed C14 carbonium ion intermediate. Moreover, the in vitro inhibition of the plant sterol reductase by a series of ammonium-ion-containing fungicides was demonstrated. The relative specificity of these different series of inhibitors toward cycloeucalenol-obtusifoliol isomerase, delta 8----delta 7-sterol isomerase and delta 8,14-sterol delta 14-reductase, was directly studied.  相似文献   

8.
Six nitrogen-, sulfur- and cyclopropane-containing derivatives of cholestanol were examined as inhibitors of growth and sterol biosynthesis in the trypanosomatid protozoan Crithidia fasciculata. The concentrations of inhibitors in the culture medium required for 50% inhibition of growth were 0.32 microM for 24-thia-5 alpha,20 xi-cholestan-3 beta-ol (2), 0.009 microM for 24-methyl-24-aza-5 alpha,20 xi-cholestan-3 beta-ol (3), 0.95 microM for (20,21),(24,-25)-bis-(methylene)-5 alpha,20 xi-cholestan-3 beta-ol (4), 0.13 microM for 22-aza-5 alpha,20 xi-cholestan-3 beta-ol (5), and 0.3 microM for 23-azacholestan-3-ol (7). 23-Thia-5 alpha-cholestan-3 beta-ol (6) had no effect on protozoan growth at concentrations as high as 20 microM. Ergosterol was the major sterol observed in untreated C. fasciculata, but significant amounts of ergost-7-en-3 beta-ol, ergosta-7,24(28)-dien-3 beta-ol, ergosta-5,7,22,24(28)-tetraen-e beta-ol, cholesta-8,24-dien-3 beta-ol, and, in an unusual finding, 14 alpha-methyl-cholesta-8,24-dien-3 beta-ol were also present. When C. fasciculata was cultured in the presence of compounds 2 and 3, ergosterol synthesis was suppressed, and the principal sterol observed was cholesta-5,7,24-trien-3 beta-ol, a sterol which is not observed in untreated cultures. The presence of this trienol strongly suggests that 2 and 3 specifically inhibit the S-adenosylmethionine:sterol C-24 methyltransferase but do not interfere with the normal enzymatic processing of the sterol nucleus. When C. fasciculata was cultured in the presence of compounds 5 and 7, the levels of ergosterol and ergost-7-en-3 beta-ol were suppressed, but the amounts of the presumed immediate precursors of these sterols, ergosta-5,7,22,24(28)-tetraen-3 beta-ol and ergosta-7,24-(28)-dien-3 beta-ol, respectively, were correspondingly increased. These findings suggest that 5 and 7 specifically inhibit the reduction of the delta 24(28) side chain double bond. When C. fasciculata was cultured in the presence of compound 4, ergosterol synthesis was suppressed, but the sterol distribution in these cells was complex and not easily interpreted. Compound 6 had no significant effect on sterol synthesis in C. fasciculata.  相似文献   

9.
5 alpha-Cholest-8(14)-en-3 beta-ol-15-one is a potent inhibitor of sterol biosynthesis in mammalian cells in culture and has significant hypocholesterolemic activity upon oral administration to rodents and non-human primates. The conversion of the 15-ketosterol to cholesterol upon incubation with the 10,000 x g supernatant fraction of rat liver homogenate preparations under aerobic conditions has been reported (D.J. Monger, E.J. Parish and G.J. Schroepfer, Jr. (1980) J. Biol. Chem. 255, 11122-11129). Presented herein are results of studies of the metabolism of [2,4-3H]5 alpha-cholest-8(14)-en-3 beta-ol-15-one obtained upon incubation with the microsomal, cytosolic and the 10,000 x g supernatant fractions of liver homogenates of female rats under a variety of conditions. The results of these studies indicated metabolism of the 15-ketosterol to materials with the chromatographic properties of fatty acid esters of the 15-ketosterol, fatty acid esters of C27-monohydroxysterols, a component similar to the 15-ketosterol (possibly an isomer of the delta 8(14)-15-ketosterol), and a polar component. Detailed studies of the C27-monohydroxysterols obtained from incubation of the 15-ketosterol under anaerobic conditions indicated the formation of labeled 5 alpha-cholesta-8,14-dien-3 beta-ol and 5 alpha-cholest-7-en-3 beta-ol which were characterized by their behavior on silicic acid column chromatography, by the behavior of their acetate derivatives on medium pressure liquid chromatography on alumina-AgNO3 columns, and by co-crystallization of the labeled sterols with authentic unlabeled standards. The identification of 5 alpha-cholesta-8,14-dien-3 beta-ol and 5 alpha-cholest-7-en-3 beta-ol as metabolites of the 15-ketesterol, coupled with previous studies of the metabolism of 5 alpha-cholesta-8,14-dien-3 beta-ol and of 5 alpha-cholest-8(14)-ene-3 beta, 15 alpha-diol and 5 alpha-cholest-8(14)-ene-3 beta, 15 beta-diol has permitted the formulation of a scheme for the overall metabolism of the 15-ketosterol to cholesterol.  相似文献   

10.
A method is described for the chemical synthesis of stigmasta-5,24-dien-3β-ol-[26-14C] and (24S)-24-ethylcholesta-5,25-dien-3β-ol-[26-14C] (clerosterol). 28-Isofucosterol-[7-3H2] fed to developing barley seedlings (Hordeum vulgare) was incorporated into sitosterol and stigmasterol confirming the utilisation of a 24-ethylidene sterol intermediate in 24α-ethyl sterol production in this plant. Also, the use of mevalonic acid-[2-14C(4R)-4-3H1] verified the loss of the C-25 hydrogen of 28-isofucosterol during its conversion into sitosterol and stigmasterol in agreement with the previously postulated isomerisation of the 24-ethylidene sterol to a Δ24(25)-sterol prior to reduction. However, feeding stigmasta-5,24-dien-3β-ol [26-14C] to barley seedlings gave very low incorporation into sitosterol. Attempts to trap radioactivity from mevalonic-[2-14C(4R)-4-3H1] in stigmasta-5,24-dien-3β-ol when this unlabelled sterol was administered to barley seedlings gave only a very small incorporation although both 28-isofucosterol and sitosterol were labelled.  相似文献   

11.
F F Knapp  G J Schroepfer 《Steroids》1975,26(3):339-357
Described herein are chemical syntheses of the following compounds: 4-methyl-(24S)-24-ethyl-cholesta-4,22-dien-3-one, 4,4-dimethyl-(24S)-24-ethyl-cholesta-5,22-dien-3-one, 4beta-methyl-(24R)-24-ethyl-5alpha-cholestan-3beta-ol, 4alpha-methyl-(24R)-24-ethyl-5alpha-cholestan-3beta-ol, 4alpha-methyl-(24S)-24-ethyl-5alpha-cholest-22-en-3beta-ol, 4-methyl-6beta-bromo-(24S)-24-ethyl-cholesta-4,22-dien-3-one, 4alpha-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-ol, 4alpha,5alpha-epoxy-(24S)-24-ethyl-cholesta-4,22-dien-3beta-yl acetate, 4beta-methyl-(24S)-24-ethyl-cholest-22-en-3beta,5alpha-diol, 4beta-methyl-5alpha-hydroxy-(24S)-24-ethyl-cholest-22-en-3beta-yl acetate, 4beta-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-yl acetate and 4beta-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-ol. Chromatographic, nuclear magnetic resonance, and mass spectral data are presented for the compounds under consideration.  相似文献   

12.
A simple method is described for the direct isolation of zymosterol (5 alpha-cholesta-8,24-dien-3 beta-ol) of high purity from a sterol mutant of Saccharomyces cerevisiae. This yeast strain, which is a double mutant of the ERG6 (sterol transmethylase) and ERG2 (C-8 sterol isomerase) genes, accumulates zymosterol as its major sterol component.  相似文献   

13.
An in vitro assay for delta14-sterol reductase from yeast was developed, using ergosta-8,14-dien-3beta-ol as the substrate. The kinetics and localization of the enzyme were examined. The inhibition of the enzyme by the antimycotic agent, 15-azasterol, was verified.  相似文献   

14.
The synthetic inhibitors of sterol biosynthesis, 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one and 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one, are of interest as potential cholesterol lowering drugs. Rapid metabolism of synthetic 15-ketosterols may lead to a decrease, or loss, of their potency to affect lipid metabolism. 3beta-Hydroxy-5alpha-cholest-8(14)-en-15-one is reported to be rapidly side chain oxygenated by rat liver mitochondria. In an attempt to reduce this metabolism, the novel side chain modified 15-ketosterol 3beta-Hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one was synthesized. We have examined the metabolism by recombinant human CYP27A1 of this novel side chain modified 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one and compared the rate of metabolism with that of the previously described 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one. Both sterols were found to be efficiently metabolized by recombinant human CYP27A1. None of the two 15-ketosterols was significantly metabolized by microsomal 7alpha-hydroxylation. Interestingly, CYP27A1-mediated product formation was much lower with the side chain modified 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one than with the previously described 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one. A surprising finding was that this novel side chain modified sterol was metabolized mainly in the C-28 position by CYP27A1. The data on 28-hydroxylation by human CYP27A1 provide new insights on the catalytic properties and substrate specificity of this enzyme. The finding that 3beta-hydroxy-24S-methyl-5alpha-cholesta-8(14),22-dien-15-one with a modified side chain is metabolized at a dramatically slower rate than the previously described 15-ketosterol with unmodified side chain may be important for future development of synthetic cholesterol lowering sterols.  相似文献   

15.
A suite of six sterols, lanosterol, lanost-8(9)-en-3beta-ol, 4, 4-dimethylcholesta-8(14),24-dien-3beta-ol, 4, 4-dimethylcholest-8(14)-en-3beta-ol, 4-methylcholesta-8(14), 24-dien-3beta-ol and 4-methylcholest-8(14)-en-3beta-ol, were identified in the psychrophilic methanotrophic bacterium, Methylosphaera hansonii. Their presence suggests that the capacity for sterol biosynthesis in methanotrophic bacteria is limited to the family Methylococcaceae but which have widely different optimal growth temperatures.  相似文献   

16.
Side-chain functionalized delta 8(14)-15-ketosterols have been synthesized from 3 beta-acetoxy-24-hydroxy-5 alpha-chol-8(14)-en-15-one (VI) as part of a program to prepare potential metabolites and analogs of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I), a potent regulator of cholesterol metabolism. Oxidation of VI to the 24-aldehyde VII, followed by Wittig olefination with isopropyltriphenylphosphonium iodide gave 3 beta-acetoxy-5 alpha-cholesta-8(14),24-dien-15-one (VIII), which was hydrolyzed to the free sterol IX. Oxymercuration of VIII followed by hydrolysis of the 3 beta-acetate gave 3 beta,25-dihydroxy-5 alpha-cholest-8(14)-en-15-one (IV). Hydroboration-oxidation of VIII followed by hydrolysis of the 3 beta-acetate gave 3 beta,24-dihydroxy-5 alpha-cholest-8(14)-en-15-one (V) as a 5:4 mixture of the 24R and 24S epimers. 1H and 13C nuclear magnetic resonance (NMR) assignments and mass spectral fragmentation patterns, supported by high-resolution measurements, are presented for IV and its 3 beta-acetate, V, VII, VIII, and IX. Characterization of IV by NMR and of trimethylsilyl ethers of IV and V by gas chromatography-mass spectrometry was compatible with spectral data for samples of IV and V isolated previously after incubation of I with rat liver mitochondria in the presence of NADPH. Sterols IV, V, and IX were very potent in lowering of the level of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Chinese hamster ovary cells; their potency was comparable to that of I.  相似文献   

17.
Two azole resistant isolates of Saccharomyces cerevisiae carried mutations allelic to erg 3 and were blocked to differing degrees at the C5-6 desaturation step of ergosterol biosynthesis. When treated with the sterol 14 alpha-demethylation inhibitor fluconazole the wild-type sensitive strain accumulated lanosterol and 14 alpha-methyl-erogosta-8,24(28)-dien-3 beta, 6 alpha-diol (14-methyl-3,6 diol). The stringent desaturase mutant, A2, accumulated 14 alpha-methyl-8,24(28)-dien-3 beta-ol (14-methyl fecosterol) and lanosterol as the major sterol components when treated with fluconazole. Resistant isolate A3 accumulated 14-methyl-3,6-diol, 14-methyl fecosterol, and lanosterol and was only partially blocked at sterol C5-6 desaturation. We conclude that functional sterol C5-6 desaturase is required for the synthesis of 14-methyl-3,6-diol under conditions of azole inhibition. We present a new hypothesis for the mode of action of azole antifungals based on the inability of 14-methyl-3,6-diol to support growth, and suggest that growth can occur through utilisation of 14-methyl fecosterol, produced by a combination of azole inhibition and defective sterol C5-6 desaturation.  相似文献   

18.
Treatment of 3 beta-benzoyloxy-14 alpha,15 alpha-epoxy-5 alpha-cholest-7-ene (I) with gaseous HCl in chloroform at -40 degrees C gave, in 87% yield, 3 beta-benzoyloxy-7 alpha,15 beta-dichloro-5 alpha cholest-8(14)-ene (III). Reduction of the latter compound with lithium aluminum hydride in ether at room temperature for 20 min gave, in 86% yield, 7 alpha-15 beta-dichloro-5 alpha-cholest-8(14)-en-3 beta-ol (IV). The latter compound was fully characterized and assignments of the individual carbon peaks in the 13C nuclear magnetic resonance spectra of this sterol have been completed. Reduction of III with excess lithium aluminum hydride in refluxing ether for 4 days gave, in 74% yield, 5 alpha-cholesta-7,14-dien-3 beta-ol (VI). Reduction of the dichloro-steryl benzoate III with lithium triethylborohydride in tetrahydrofuran gave, in 88% yield, 5 alpha-cholest-8(14)-en-3 beta-ol (VII). A similar reduction using lithium triethylborodeuteride led to the formation of [7 beta, 15 xi-2 H2]-VIIa. Treatment of III with concentrated HCl in a mixture of chloroform and methanol gave, in 79% yield, 3 beta-benzoyloxy-5 alpha-cholest-8(14)-en-15-one (II) which was characterized as such and as the corresponding free sterol.  相似文献   

19.
M Kobayashi  H Mitsuhashi 《Steroids》1975,26(5):605-624
The sterols of the scallop, Patinopecten yessoensis Jay, was found to contain over 20 components. The major components were delta5-sterols, and lesser amount of ring-saturated sterols were also present. Biogenetically unusual C26 sterols (24-norcholesta-5,22-dien-3beta-ol and 24-norcholest-22-en-3beta-ol) and 24(28)-cis-24-propylidenecholest-5-en-3beta-ol (29-methylisofucosterol), 22-trans-27-nor-(24S)-24-methylcholesta-5,22-dien-3beta-ol (occelasterol), and a new sterol, 22-trans-27-nor-(24S)-24-methylcholest-22-en-3beta-ol (patinosterol), were isolated and their structures were confirmed. Occurrence of 22-trans-(24S)-24-methylcholesta-5,22-dien-3beta-ol (24-epibrassicasterol) was confirmed. 22-cis-Cholesta-5,22-dien-3beta-ol was not found.  相似文献   

20.
[Methyl-14C]methionine was supplied to yeast cells under aerobic and anaerobic conditions for the investigation of the pathway for ergosterol biosynthesis after the methylation of the side-chain. Under aerobic conditions, the incorporation of radioactivity into ergosterol was high. With a limited oxygen supply, in contrast, the radioactivity was first accumulated in ergosta-7,24(28)-dien-3beta-ol and ergosta-8,24(28)-dien-3beta-ol, and then transferred to ergost-7-en-3beta-ol, ergost-8-en-3beta-ol and ergosta-7,22-dien-3beta-ol with time. Under strictly anaerobic conditions, a double bond was introduced neither to delta5 nor to delta22. The results of the tracer experiments suggested the operation of several pathways in the late stages of ergosterol biosynthesis. It was also suggested that the main pathways varied depending on the conditions such as oxygen supply and other factors. The above conclusion was supported by the results of the analyses of the sterol compositions of the cells grown under various conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号