首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A woodchuck-derived hepatitis delta virus (HDV) inoculum was created by transfection of a genotype I HDV cDNA clone directly into the liver of a woodchuck that was chronically infected with woodchuck hepatitis virus. All woodchucks receiving this inoculum became positive for HDV RNA in serum, and 67% became chronically infected, similar to the rate of chronic HDV infection in humans. Analysis of HDV sequences obtained at 73 weeks postinfection indicated that changes had occurred at a rate of 0.5% per year; many of these modifications were consistent with editing by host RNA adenosine deaminase. The appearance of sequence changes, which were not evenly distributed on the genome, was correlated with the course of HDV infection. A limited number of modifications occurred in the consensus sequence of the viral genome that altered the sequence of the hepatitis delta antigen (HDAg). All chronically infected animals examined exhibited these changes 73 weeks following infection, but at earlier times, only one of the HDV carriers exhibited consensus sequence substitutions. On the other hand, sequence modifications in animals that eventually recovered from HDV infection were apparent after 27 weeks. The data are consistent with a model in which HDV sequence changes are selected by host immune responses. Chronic HDV infection in woodchucks may result from a delayed and weak immune response that is limited to a small number of epitopes on HDAg.  相似文献   

2.
On the basis of the complete nucleotide sequence of the single-stranded, covalently closed circular hepatitis delta virus RNA genome (K.-S. Wang, Q.-L. Choo, A. J. Weiner, J.-H. Ou, R. C. Najarian, R. M. Thayer, G. T. Mullenbach, K. J. Denniston, J. L. Gerin, and M. Houghton, Nature [London] 323:508-514, 1986 [Author's correction, 328:456, 1987]), five long open reading frames (ORFs) encoding polypeptides containing a methionine proximal to the amino terminus were expressed in bacteria. Only polypeptides encoded by the antigenomic ORF5 cross-reacted with antisera obtained from patients with hepatitis delta virus infections. Immunological analysis of viral extracts and the recombinant ORF5 polypeptides synthesized in bacteria and yeast cells revealed that ORF5 encodes the immunogenic epitope(s) shared by both hepatitis delta viral polypeptides p27 delta and p24 delta and probably represents the complete structural gene for p27 delta and p24 delta. We also present evidence that ORF5 encodes the hepatitis delta antigen, an antigen originally found in the nuclei of hepatocytes of infected individuals (M. Rizzetto, M. G. Canese, S. Arico, O. Crivelli, F. Bonino, C. G. Trepo, and G. Verme, Gut 18:997-1003, 1977). A comparison of the primary structure of the predicted hepatitis delta antigen polypeptides with that of the core antigen of the hepatitis B virus shows that these polypeptides are very dissimilar.  相似文献   

3.
Y P Xia  M M Lai 《Journal of virology》1992,66(11):6641-6648
Two forms of hepatitis delta antigen (HDAg) have different roles in the replication cycle of hepatitis delta virus (HDV); the small forms trans activates HDV RNA replication, whereas the large form suppresses it but is needed for virion assembly. To understand the mechanism of these regulatory activities, we studied the possible HDAg oligomerization and its role in HDV replication. In this report, we provide direct biochemical evidence for the in vitro and in vivo formation of homodimers and heterodimers between these two HDAg species. By deletion mutagenesis, we showed that this protein interaction is mediated by the leucine zipper-like sequence residing in the N-terminal one-third of HDAg. Furthermore, site-specific mutants with various substitutions on two of the leucine residues in this stretch of sequence had reduced or no ability to form HDAg dimers. Correspondingly, the small HDAg with mutations in the leucine zipper-like sequence had reduced abilities to trans activate HDV RNA replication. Similar mutations on the leucine zipper-like sequence of the large HDAg also resulted in loss of the ability of large HDAg to inhibit HDV RNA replication. The in vivo biological activities of both forms of HDAg (trans activation and trans-dominant inhibition of HDV RNA replication, respectively) correlated with the extent of HDAg oligomerization in vitro. Thus, we conclude that the small HDAg participates in HDV RNA replication as an oligomer form and that the large HDAg inhibits HDV RNA replication as a result of its complex formation with small HDAg. A "black sheep" model for the mechanism of trans-dominant inhibition by the large HDAg is presented.  相似文献   

4.
The large hepatitis delta antigen (HDAg) has been found to be essential for the assembly of the hepatitis delta virion. Furthermore, in a cotransfection experiment, the large HDAg itself, without the hepatitis delta virus (HDV) genome and small HDAg, could be packaged into hepatitis B surface antigen (HBsAg) particles. By deletion analysis, it was shown that the amino-terminal leucine zipper domain was dispensable for packaging. The large HDAg could also help in copackaging of the small HDAg into HBsAg particles without the need for HDV RNA. This process was probably mediated through direct interaction of the two HDAgs as a mutated large HDAg whose leucine zipper domain was deleted such that it could not help in copackaging of the small HDAg. This mutated large HDAg did not suppress HDV replication, suggesting that this effect is probably also via protein interaction. These results indicated that functional domains of the large HDAg responsible for packaging with HBsAg particles and for the trans-negative effect on HDV replication can be separated.  相似文献   

5.
The genetic origin, structure, and biochemical properties of the delta antigen (HDAg) of a human hepatitis delta virus (HDV) were investigated. A cDNA fragment containing the open reading frame encoding the HDAg was transcribed into RNA and used for in vitro translation in rabbit reticulocyte lysates. The HDAg open reading frame was also inserted into an expression vector containing a simian virus 40 T-antigen promoter and expressed into COS 7 cells. In both systems, a protein species of 26 kilodaltons was synthesized from this open reading frame and could be specifically immunoprecipitated with antisera obtained from patients with delta hepatitis. A similar protein was also synthesized from antigenomic-sense monomeric HDV RNA in both systems, although the efficiency of translation was lower than that of the isolated open reading frame. This protein was found to be phosphorylated at the serine residues. Immunoperoxidase studies with anti-HDV sera demonstrated that the HDAg was expressed mainly in the nuclei of the transfected COS 7 cells. Moreover, the HDAg was shown to bind the genomic RNA of HDV. These studies indicate that HDAg is encoded by the antigenomic-sense RNA of HDV and is a nuclear phosphoprotein associated with an RNA-binding activity.  相似文献   

6.
M F Chang  S C Chang  C I Chang  K Wu    H Y Kang 《Journal of virology》1992,66(10):6019-6027
Hepatitis delta antigen (HDAg) is the only known protein of hepatitis delta virus and was previously shown to localize in the nucleoplasm of infected liver cells. In this study, nuclear localization signals of HDAg were defined by expressing various domains of the antigen in both hepatic and nonhepatic cells as beta-galactosidase fusion proteins. A cytochemical staining assay demonstrated that a domain from amino acid residues 35 to 88 of HDAg was able to facilitate transport to the nucleus of the originally cytoplasm-localized protein beta-galactosidase. Two nuclear localization signals, NLS1 and NLS2, which are similar to those of simian virus 40 T antigen and polyomavirus T antigen, respectively, were identified. Either NLS1 or NLS2 alone was sufficient for the nuclear transport of HDAg. However, a fusion protein (N65Z) containing beta-galactosidase and the N-terminal 65 amino acids of HDAg, containing NLS1, was localized exclusively in the cytoplasm and perinuclear region. A possible hydrophobic subdomain between amino acid residues 50 and 65 may block the function of NLS1. Nevertheless, N65Z could enter the nuclei of transfected cells when it was coexpressed with full-length HDAg. Entry into the nucleus may be mediated by the coiled-coil structure rather than the putative leucine zipper motif located between amino acid residues 35 and 65. The existence of two independent nuclear localization signals may ensure the proper functioning of HDAg in the multiplication of delta virus in the nucleus. In addition, two putative casein kinase II sites (SRSE-5 and SREE-126) that may be important in controlling the rate of nuclear transport were found in HDAg.  相似文献   

7.
Hepatitis delta virus (HDV)-associated particles were purified from the serum of an experimentally infected chimpanzee by size chromatography and by density centrifugation. Hepatitis delta antigen (HDAg) was detected after mild detergent treatment at a column elution volume corresponding to 36-nm particles and banded at a density of 1.25 g/ml. The serum had an estimated titer of 10(9) to 10(10) HDV-associated particles and had only a 10-fold excess of hepatitis B surface antigen (HBsAg) not associated with HDAg. Therefore, HDV appears to be much more efficiently packed and secreted than is its helper virus, hepatitis B virus (HBV), which is usually accompanied by a 1,000-fold excess of HBsAg. The protein compositions of the HDAg-containing particles were analyzed by immunoblotting with HDAg-, HBsAg-, and hepatitis B core antigen-specific antisera and monoclonal antibodies to HBV surface gene products. The HBsAg envelope of HDAg contained approximately 95% P24/GP27s, 5% GP33/36s, and 1% P39/GP42s proteins. This protein composition was more similar to that of the 22-nm particles of HBsAg than to that of complete HBV. The significant amount of GP33/36s suggests that the HBsAg component of the HDV-associated particle carries the albumin receptor. Two proteins of 27 and 29 kilodaltons which specifically bound antibody to HDAg but not HBV-specific antibodies were detected in the interior of the 36-nm particle. Since these proteins were structural components of HDAg and were most likely coded for by HDV, they were designated P27d and P29d.  相似文献   

8.
Hepatitis D virus (delta agent) markers were present in 111 (36%) of 308 intravenous drug abusers who were positive for hepatitis B surface antigen (HBsAg), 52 of these having hepatitis D virus antigenaemia. IgM antibody to hepatitis B core antigen (anti-HBc IgM) was present in 92 out of 95 subjects tested, indicating that hepatitis D virus and hepatitis B virus infections had been acquired simultaneously. Hepatitis D virus markers were present in three out of four patients with fulminant hepatitis, and in 80 of 223 (36%) with mild or moderate hepatitis compared with four of 29 (14%) of those who were asymptomatic. These proportional differences were significant (p less than 0.001). Hepatitis D virus markers were present in twice as many patients positive for anti-HBc IgM requiring admission to hospital with acute hepatitis compared with outpatients attending a drug treatment centre. Tests on one patient showed complete disappearance of HBsAg, but hepatitis D antigen (HDAg or delta antigen) and hepatitis B e antigen (HBeAg) were still present in serum samples. All five patients with chronic active hepatitis had hepatitis D antibody (anti-HD) compared with seven of 24 (29%) with chronic persistent hepatitis (p = 0.008). Blocking anti-HD persisted for long periods after simultaneous infections with hepatitis B virus and hepatitis D virus but at lower titres than in patients with chronic liver disease.  相似文献   

9.
Hepatitis delta virus (HDV) RNA forms an unbranched rod structure that is associated with hepatitis delta antigen (HDAg) in cells replicating HDV. Previous in vitro binding experiments using bacterially expressed HDAg showed that the formation of a minimal ribonucleoprotein complex requires an HDV unbranched rod RNA of at least about 300 nucleotides (nt) and suggested that HDAg binds the RNA as a multimer of fixed size. The present study specifically examines the role of HDAg multimerization in the formation of the HDV ribonucleoprotein complex (RNP). Disruption of HDAg multimerization by site-directed mutagenesis was found to profoundly alter the nature of RNP formation. Mutant HDAg proteins defective for multimerization exhibited neither the 300-nt RNA size requirement for binding nor specificity for the unbranched rod structure. The results unambiguously demonstrate that HDAg binds HDV RNA as a multimer and that the HDAg multimer is formed prior to binding the RNA. RNP formation was found to be temperature dependent, which is consistent with conformational changes occurring on binding. Finally, analysis of RNPs constructed with unbranched rod RNAs successively longer than the minimum length indicated that multimeric binding is not limited to the first HDAg bound and that a minimum RNA length of between 604 and 714 nt is required for binding of a second multimer. The results confirm the previous proposal that HDAg binds as a large multimer and demonstrate that the multimer is a critical determinant of the structure of the HDV RNP.Human hepatitis delta virus (HDV) is an unusual subviral agent that increases the severity of acute and chronic liver disease in those infected with its helper, hepatitis B virus (23). The HDV genome is a 1,680-nucleotide (nt) single-stranded circular RNA that is replicated by a double-rolling-circle mechanism (reviewed in references 15 and 28). Both the genome and antigenome RNAs form a characteristic unbranched rod structure due to 70% sequence complementarity between the noncoding and coding regions of the RNA (10, 11, 31). HDV encodes just one protein, hepatitis delta antigen (HDAg), which forms ribonucleoprotein (RNP) complexes with both the genome and the antigenome in cells replicating HDV (3, 5, 30). These complexes play fundamental roles in viral RNA replication and packaging and their characterization is essential for understanding these processes, which are not well characterized.HDAg has been shown to form dimers and higher order multimers, even in the absence of HDV RNA (25, 30, 32). The multimerization activity has been localized to the amino-terminal third of the 195-amino-acid (aa) protein (12, 24, 30, 32). X-ray crystallographic analysis of a peptide comprised of aa 12 to 60 indicated that antiparallel dimers are stabilized by a coiled coil (aa 16 to 48), as well as a hydrophobic core region (aa 50 to 60) that also stabilizes interactions between dimers such that an octameric structure may form (35). Zuccola et al. found that bacterially expressed HDAg could be cross-linked in an octameric structure, and Cornillez-Ty et al. obtained evidence supporting such a structure in cells replicating HDV (7, 35). Site-directed mutations of HDAg amino acids critical for dimerization and/or multimerization abolish the ability of HDAg to support RNA replication (18, 32), indicating that the formation of HDAg multimers is essential for this process.We recently showed that bacterially expressed, C-terminally truncated HDAg forms stable RNP complexes in vitro with segments of HDV RNA that form unbranched rod structures (8). No particular sequences or structures in the RNA, other than the HDV unbranched rod, were essential for complex formation, but, remarkably, binding required that the RNA have a minimum length of at least about 300 nt. Overall, the results were consistent with the formation of a large RNP containing multiple copies of the 19-kDa protein that bound to the RNA either in a highly cooperative manner or as a preformed multimer. On the other hand, based on indirect measures of the RNA-binding activity of site-directed HDAg mutations in cells, others have found that HDAg multimerization might not be required for RNA-binding activity (18).Here, we directly analyze the role of HDAg multimerization in the formation of the HDV RNP complex. We find that HDAg binds to HDV unbranched rod RNA as a preformed multimer. Site-directed mutations that disrupted protein multimerization did not abolish binding but profoundly altered the nature of the RNA-protein complex. In particular, we found that multimerization is associated with RNA-binding specificity, including the RNA length requirement for binding. For the wild-type protein, RNP formation was found to be strongly temperature dependent, suggesting that conformational changes occur on binding, and providing a plausible explanation of the RNA length requirement for binding. Furthermore, we show that the protein binds as multiple multimeric units on longer RNAs, provided the length of the RNA is sufficient. We conclude that the HDAg multimer plays a critical role in the formation of properly structured HDV RNPs.  相似文献   

10.
Infection with hepatitis delta virus (HDV) is an important cause of acute and chronic liver disease and can be rapidly fatal. Sequencing of the HDV RNA genome has revealed variability at the C-terminal end of the delta antigen reading frame. One genome type (termed the S genome) synthesizes a 24-kDa protein thought to be required for genome replication. Another genome type (termed the L genome) extends the reading frame by 19 amino acids as a result of a single base change. Replication of the S and L genomes was studied in cultured fibroblasts. While the S genome efficiently initiated genome replication, the L genome did not. Moreover, in a codelivery experiment, L genome RNA inhibited replication of the S genome. Potent trans inhibition was also observed following cotransfection of the S genome and a plasmid encoding the larger delta antigen. Mutational analysis indicated that the inhibitory activity was not a simple function of the large delta antigen reading frame's extra length. Implications for the viral life cycle, clinical infection, and potential treatment are discussed.  相似文献   

11.
The functions of delta antigens (HDAgs) in the morphogenesis of hepatitis delta virus (HDV) have been studied previously. The C terminus of large HDAg has been shown to complex with the small surface antigen (HBsAg) of helper hepatitis B virus, whereas the assembly of small HDAg requires interaction with the N terminus of large HDAg (M.-F. Chang, C.-J. Chen, and S. C. Chang, J. Virol. 68:646-653, 1994). To further examine the molecular mechanisms by which HDAgs are involved in the assembly of HDV RNA, we have cotransfected Huh-7 cells with plasmids representing a longer than unit-length HDV and the small HBsAg cDNAs. We found that HDAg mRNA could be generated from an endogenous promoter within the HDV cDNA that was translated into large HDAg. Large HDAg is capable of complexing with monomeric HDV genomic RNA to form ribonucleoprotein particles (RNPs) and is capable of forming enveloped HDV-like particles in the presence of small HBsAg without undergoing HDV replication. In addition, the middle region from amino acid residues 89 to 145 of large HDAg is required for assembly of the RNPs but is dispensable for assembly of the enveloped particles. RNA assembly is also demonstrated with small HDAg when it is cotransfected with a packaging-defective large HDAg mutant and small HBsAg. Leu-115 within the putative helix-loop-helix structure of the small HDAg is important for the replication of HDV but is not essential for RNA assembly, suggesting that conformational requirements of small HDAg for replication and assembly of viral RNA may be different. Further studies indicate that a 312-nucleotide linear HDV RNA from one end of the HDV and structure is sufficient to form RNP complexes competent for assembly of virus-like particles with large HDAg and small HBsAg.  相似文献   

12.
I J Lin  Y C Lou  M T Pai  H N Wu  J W Cheng 《Proteins》1999,37(1):121-129
Hepatitis delta virus (HDV) is a satellite virus of the hepatitis B virus (HBV) which provides the surface antigen for the viral coat. The RNA genome of HDV encodes two proteins: the small delta antigen and the large delta antigen. The two proteins resemble each other except for the presence of an additional 19 amino acids at the C terminus of the latter species. We have found that the N-terminal leucine-repeat region of hepatitis delta antigen (HDAg) binds to the autolytic domain of HDV genomic RNA and attenuates its autolytic activity. A 27-residue polypeptide corresponding to residues 24-50 of HDAg, designated dAg(24-50), was synthesized, and its solution structure was found to be an alpha-helix by circular dichroism and (1)H-nuclear magnetic resonance (NMR) techniques. Binding affinity of dAg(24-50) with HDV genomic RNA was found to increase with its alpha-helical content, and it was further confirmed by modifying its N- and C-terminal groups. Furthermore, the absence of RNA binding activity in the mutant peptides, dAgM(24-50am) and dAgM(Ac24-50am), in which Lys38, Lys39, and Lys40 were changed to Glu, indicates a possible involvement of these residues in their binding activity. Structural knowledge of the N-terminal leucine-repeat region of HDAg thus provides a molecular basis for the understanding of its role in the interaction with RNA. Proteins 1999;37:121-129.  相似文献   

13.
Hepatitis delta virus (HDV) is a defective RNA virus which is dependent on hepatitis B virus for essential helper functions. Only a single highly basic phosphoprotein, HDV antigen (HDAg), is expressed by the HDV genome during infection in humans. Antibody directed to HDAg is important in the diagnosis of HDV infection, and it is likely but not yet proven that the immune response to HDAg provides significant protection against subsequent exposures to HDV. In an effort to map the antigenic domains of HDAg, 209 overlapping hexapeptides, spanning the entire 214 amino acid residues of the protein, were synthesized on polyethylene pins and probed by enzyme-linked immunosorbent assay with sera containing high titers of anti-HD antibodies. Domains recognized by antibodies present in serum from human chronic carriers of this virus included residues 2 to 7, 63 to 74, 86 to 91, 94 to 100, 159 to 172, 174 to 195, and 197 to 207. Antibody from an acutely superinfected woodchuck recognized similar epitopes, as well as a domain spanning residues 121 to 128. Together, residues in these antigenic domains constitute 41% of the HDAg molecule. Oligopeptides 15 to 29 residues in length and representing epitopes of HDAg found to be dominant in humans (residues 2 to 17, 156 to 184, and 197 to 211) were synthesized in bulk and found to possess significant antigenic activity by microdilution enzyme-linked immunosorbent assay. The reactivity of peptide 197-211 with human sera confirms that the entire 214 amino acids of HDAg are expressed during infection in vivo. In addition, these results suggest that synthetic peptides may be useful reagents for development of new and improved diagnostic tests for HDV infection.  相似文献   

14.
Both forms of the hepatitis delta antigen (HDAg) encoded by hepatitis delta virus are active only as oligomers. Previous studies showed that quadrin, a synthetic 50-residue peptide containing residues 12-60 from the N-terminus of HDAg, interferes with HDAg oligomerization, forms an alpha-helical coiled coil in solution, and forms a novel square octamer in the crystal consisting of four antiparallel coiled-coil dimers joined at the corners by hydrophobic binding of oligomerization sites located at each end of the dimers. We designed and synthesized deltoid (CH3CO-[Cys23]HDAg-(12-27)-seryl-tRNA synthetae-(59-65)-[Cys42]HDAg-(34-60)-Tyr-NH2), a chimeric protein that structurally resembles one end of the quadrin dimer and contains a single oligomerization site. The 51-residue chain of deltoid contains a seven-residue alpha-hairpin loop in place of the remainder of the quadrin dimer plus Cys12 and Cys31 for forming an intrachain disulfide bridge. Reduced, unbridged deltoid (Tm=61 degrees C, DeltaG(H2O)=-1.7 kcal mol(-1)) was less stable to denaturation by heat or guanidine HCl than oxidized, intrachain disulfide-bridged deltoid (Tm>80 degrees C, DeltaG(H2O)=-2.6 kcal mol(-1)). Each form is an alpha-helical dimer that reversibly dissociates into two monomers (Kd=80 microM).  相似文献   

15.
Simultaneous infection with hepatitis delta virus (HDV) and hepatitis B virus (HBV) in humans is often associated with severe viral liver disease including fulminant hepatitis. Since HBV is thought to be noncytopathic to the hepatocyte, the enhanced disease severity observed during dual infection has been attributed to either simultaneous immune responses against the two viruses or direct cytotoxic effects of HDV products on the hepatocyte or both. To examine these alternate possibilities, we produced transgenic mice that express the small and large delta antigens (HDAg) in hepatocyte nuclei at levels equal to those observed during natural HDV infection. No biological or histopathological evidence of liver disease was detectable during 18 months of observation, suggesting that neither the large nor small form of HDAg is directly cytopathic to the hepatocyte in vivo.  相似文献   

16.
cDNA prepared from the single-stranded circular RNA genome of hepatitis delta virus was cloned in lambda gt11 by using RNA from the liver of an infected woodchuck. From the sequence of overlapping clones, we assembled the full sequence of 1,679 nucleotides. The sequence indicated an exceptional ability for intramolecular base pairing, yielding a rod structure with at least 70% of the bases paired and a predicted free energy of -805 kcal (-3,368 kJ)/mol. Three of the lambda clones contained sequences that were not only expressed as fusion proteins with beta-galactosidase but were recognized by human hepatitis delta virus-specific antibody. These clones were sequenced so as to establish the reading frame of the delta antigen on the antigenomic strand. The fusion protein produced by one clone was purified by immunoaffinity chromatography and then was used to raise rabbit antibodies specific for the delta antigen.  相似文献   

17.
Hepatitis delta virus requires a helper function from hepatitis B virus for packaging, release, and infection of hepatocytes. The assembly of large delta antigen (HDAg) is mediated by copackaging with the small surface antigen of hepatitis B virus (HBsAg), and the assembly of small HDAg requires interactions with large HDAg. To examine the molecular mechanisms by which small HBsAg, large HDAg, and small HDAg interact, we have established a virion assembly system in COS7 cells by cotransfecting plasmids encoding the small HBsAg, the small HDAg, and large HDAg mutants. Results indicate that sequences within the C-terminal 19-amino-acid domain flanking the Cxxx isoprenylation motif are important for the assembly of large HDAg. In addition, a large HDAg mutant bearing extra sequences separating the C-terminal 19-amino-acid domain from the common regions of the small and large HDAgs is capable, like the wild-type large HDAg, of copackaging with small HBsAg. The ability of assembly is also demonstrated for a large HDAg mutant from which nuclear localization signals have been removed. Furthermore, a cryptic signal within the N-terminal 50 amino acid residues other than the putative N-terminal coiled-coil structure and a subdomain between amino acid residues 50 and 65 of the large HDAg are important for the assembly of small HDAg as well as the trans-dominant negative regulation of large HDAg in hepatitis delta virus replication.  相似文献   

18.
Huang YH  Wu JC  Hsu SC  Syu WJ 《Journal of virology》2003,77(24):12980-12985
Whether the hepatitis delta virus (HDV) DNA vaccine can induce anti-HDV antibodies has been debatable. The role of the isoprenylated motif of hepatitis delta antigens (HDAg) in the generation of immune responses following DNA-based immunization has never been studied. Plasmids p2577L, encoding large HDAg (L-HDAg), p2577S, expressing small HDAg (S-HDAg), and p25L-211S, encoding a mutant form of L-HDAg with a cysteine-to-serine mutation at codon 211, were constructed in this study. Mice were intramuscularly injected with the plasmids. The anti-HDV antibody titers, T-cell proliferation responses, T-helper responses, and HDV-specific, gamma interferon (IFN-gamma)-producing CD8(+) T cells were analyzed. Animals immunized with p2577S showed a strong anti-HDV antibody response. Conversely, only a low titer of anti-HDV antibodies was detected in mice immunized with p2577L. Epitope mapping revealed that the anti-HDV antibodies generated by p2577L vaccination hardly reacted with epitope amino acids 174 to 194, located at the C terminus of S-HDAg. All of the HDAg-encoding plasmids could induce significant T-cell proliferation responses and generate Th1 responses and HDV-specific, IFN-gamma-producing CD8(+) T cells. In conclusion, HDAg-specific antibodies definitely exist following DNA vaccination. The magnitudes of the humoral immune responses generated by L-HDAg- and S-HDAg-encoding DNA vaccines are different. The isoprenylated motif can mask epitope amino acids 174 to 195 of HDAg but does not interfere with cellular immunity following DNA-based immunization. These findings are important for the choice of a candidate HDV DNA vaccine in the future.  相似文献   

19.
We have determined the complete nucleotide sequence of an infectious cloned genome of ground squirrel hepatitis virus (GSHV), a nonpathogenic member of the hepadnavirus group. The genome is 3,311 base pairs long and contains the major open reading frames described for the related human and woodchuck hepatitis B viruses (HBV and WHV, respectively). These reading frames include genes for the major structural proteins (the surface and core antigens), unassigned open reading frames (A and B), the longer of which is presumed to encode the viral DNA polymerase, and an open reading frame preceding and continuous with the surface antigen gene. The arrangement of these open reading frames is similar to that encountered in the genomes of HBV and WHV: all of the reading frames are encoded on the same strand, they are positioned in the same fashion with respect to each other, and a large portion (at least 51%) of the genome can be translated in two reading frames. Comparisons of the predicted translational products of the three mammalian hepadnaviruses reveal 78% amino acid homology between the proteins of GSHV and WHV and 43% homology between those of GSHV and HBV. In addition, a perfect direct repeat of 10 to 11 base pairs, separated by ca. 46 to 223 base pairs, is present in the three mammalian viruses and in duck hepatitis B virus; the position of the repeats near the 5' termini of the two strands of virion DNA suggests a role in viral replication.  相似文献   

20.
Wang B  Lohrengel B  Lu Y  Meng Z  Xu Y  Yang D  Roggendorf M  Lu M 《Cytokine》2005,32(6):296-303
Interleukin 15 (IL-15) is a member of the four-helix bundle cytokine family and has T cell growth factor activity. IL-15 plays a unique role in both innate and adaptive immune cell homeostasis, particularly for the development of NK cells and CD8+memory cells. It may be useful for stimulation of specific immune responses in chronic viral infection such as hepatitis B virus infection. The woodchuck model is an informative animal model for studies on hepadnavirus infection and therapeutic interventions. Here, the complete coding sequence of woodchuck IL-15 (wIL-15) was cloned and sequenced. wIL-15 shows a high homology (>70%) to its counterparts of other mammalian species. His-tagged recombinant wIL-15 protein was expressed and purified and showed the ability to promote the proliferation of activated mouse splenocytes and woodchuck peripheral blood lymphocytes. Further, examination of mRNA amounts in liver samples of woodchucks by semi-quantitative RT-PCR showed a slightly increased expression of wIL-15 in woodchuck livers during chronic woodchuck hepatitis virus infection. This available information will provide a basis for further studies on the function of IL-15 in the context of acute and chronic hepadnavirus infection and its potential therapeutic use for chronic hepatitis B virus infection in the woodchuck model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号