首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the extent and nature of the variability of measurements of upper airway area by acoustic reflection (AAAR), we made repeated measures of pharyngeal AAAR in 10 normal adult volunteers. We selected mean pharyngeal area as a better index of upper airway size than peak pharyngeal area or pharyngeal volume. Within-run variability of this measure was 8 +/- 4% (SD) (coeff of variation). This variability could not be explained by changes in lung volume or differences in phase of respiration. Five subjects had tracheal and pharyngeal area measured by using both the custom-made wax mouthpiece (W) and a commercial rubber pulmonary function mouthpiece (R). Reproducibility of pharyngeal AAAR was within 10% (coeff of variation) using R, but measurements of pharyngeal AAAR varied with the different types of mouthpiece, as W/R ranged from 0.72 to 1.70. In contrast, measurements of midtracheal area were similar for both mouthpiece types [mean W/R = 0.97 +/- 14 (SD)]. The acoustic reflection technique yields a reproducible index of pharyngeal size that does not vary with phase of respiration or modest changes in lung volume. Either W or R may be used to make clinical measurements, but the type of mouthpiece should be consistent and specified.  相似文献   

2.
The conventional acoustic reflection technique in which acoustic waves are launched through the mouth cannot be applied during sleep, nor can it be applied to the nasopharynx, which is the major site of occlusion in patients with obstructive sleep apnea syndrome. We propose a new technique of nasal acoustic reflection to measure pharyngeal cross-sectional areas including the nasopharynx. The acoustic waves are introduced simultaneously to both nostrils during spontaneous nasal breathing. A new algorithm takes into account the nasal septum with asymmetric nasal cavities on both sides and assumes prior knowledge of the cross-sectional area of the nasal cavities and the position of the nasal septum. This method was tested on an airway model with a septum and on healthy human subjects. The conventional technique gave inaccurate measurements for pharyngeal cross-sectional areas for an airway model with asymmetric branching, whereas the new technique measured them almost perfectly. The oro- and hypopharyngeal cross-sectional area measurements acquired by the new method were not different from those obtained by the conventional method in normal subjects. This new method can be used as a monitor of upper airway dimensions in nocturnal polysomnography.  相似文献   

3.
A collapsible tube surrounded by soft material within a rigid box was proposed as a two-dimensional mechanical model for the pharyngeal airway. This model predicts that changes in the box size (pharyngeal bony enclosure size anatomically defined as cross-sectional area bounded by the inside edge of bony structures such as the mandible, maxilla, and spine, and being perpendicular to the airway) influence patency of the tube. We examined whether changes in the bony enclosure size either with head positioning or bite opening influence collapsibility of the pharyngeal airway. Static mechanical properties of the passive pharynx were evaluated in anesthetized, paralyzed patients with sleep-disordered breathing before and during neck extension with bite closure (n = 11), neck flexion with bite closure (n = 9), and neutral neck position with bite opening (n = 11). Neck extension significantly increased maximum oropharyngeal airway size and decreased closing pressures of the velopharynx and oropharynx. Notably, neck extension significantly decreased compliance of the oropharyngeal airway wall. Neck flexion and bite opening decreased maximum oropharyngeal airway size and increased closing pressure of the velopharynx and oropharynx. Our results indicate the importance of neck and mandibular position for determining patency and collapsibility of the passive pharynx.  相似文献   

4.
To determine the effect of gas composition on the accuracy of measurements of airway area and distance using an acoustic reflection technique, we employed glass-tube models to simulate pharyngeal (Phar-model), laryngeal (Lar-model), and tracheal (Trach-model) regions of upper and central airways. We made repeated measurements of area-distance functions using gas mixtures containing 0, 2, 4, 6, 8, and 10% CO2, 80% He, and balance O2. The actual area of the model was calculated from the roentgenographic data and compared favorably with an area measured by acoustic reflections using a gas mixture containing 0% CO2. With the different gas mixtures, calculated area was overestimated only at the highest levels of CO2, with Phar-model area increasing from (mean +/- SD) 4.66 +/- 0.03 cm2 measured with 0% CO2 to 4.93 +/- 0.05 cm2 (P less than 0.05) measured with CO2 concentration of 10%. To assess the effect of CO2 concentration on measurements of distance, we isolated two discrete points located in the Phar-model and Lar-model regions. When measurements were performed using 10% CO2 mixture, Phar-model point was shifted by 1.02 +/- 0.03 cm and Lar-model point was shifted by 2.16 +/- 0.09 cm away from the microphone compared with their axial position determined, using 0% CO2 mixture (P less than 0.05). Differences in area-distance calculations at the higher levels of CO2 did not exceed the within-run variability of the technique (10 +/- 4%). We conclude that CO2 absorbers are not required during measurements of airway area by acoustic reflections, provided CO2 concentration does not exceed 10%.  相似文献   

5.
We measured tracheal flow from tracheal sounds to estimate tidal volume, minute ventilation (VI), respiratory frequency, mean inspiratory flow (VT/TI), and duty cycle (TI/Ttot). In 11 normal subjects, 3 patients with unstable airway obstruction, and 3 stable asthmatic patients, we measured tracheal sounds and flow twice: first to derive flow-sound relationships and second to obtain flow-volume relationships from the sound signal. The flow-volume relationship was compared with pneumotach-derived volume. When subjects were seated, facing forward and with neck rotation, flexion, and standing, flow-volume relationship was within 15% of pneumotach-derived volume. Error increased with neck extension and while supine. We then measured ventilation without mouthpiece or nose clip from tracheal sounds during quiet breathing for up to 30 min. Normal results +/- SD revealed tidal volume = 0.37 +/- 0.065 liter, respiratory frequency = 19.3 +/- 3.5 breaths/min, VI = 6.9 +/- 1.2 l/min, VT/TI = 0.31 +/- 0.06 l/s, and TI/Ttot = 0.37 +/- 0.04. Unstable airway obstruction had large VI due to increased VT/TI. With the exception of TI/Ttot, variations in ventilatory parameters were closer to log normal than normal distributions and tended to be greater in patients. We conclude that phonospirometry measures ventilation reasonably accurately without mouthpiece, nose clip, or rigid postural constraints.  相似文献   

6.
Assessment of maximal expiratory pressure in healthy adults   总被引:1,自引:0,他引:1  
Maximal static expiratory pressure developed at the mouth (PEmax) provides a useful clinical index of expiratory muscle function; however, the range of normal values among laboratories shows considerable variation. We examined the hypothesis that the wide variability could be attributable to the differences in technique among laboratories. We measured PEmax at functional residual capacity (PEmax FRC) in 28 healthy subjects using the following five techniques: 1) using a scuba-type mouthpiece with the cheeks supported by the hands ("hands on"), 2) without supporting the cheeks ("no hands"), 3) using a rigid, circular mouthpiece (2.8 cm ID, "tube"), 4) using the scuba-type mouthpiece but with the cheeks supported by an observer ("other hands"), and 5) using a large-bore circular mouthpiece (4.1 cm ID, "new tube"). Mean PEmax FRC obtained with hands on was significantly higher than no-hands and tube methods. PEmax FRC values obtained by the other-hands and new-tube maneuvers were similar to the hands-on maneuver. We conclude that the technique used to measure PEmax FRC can significantly affect the results and suggest that it should be measured using a large-bore circular mouthpiece or a scuba-diving mouthpiece with the cheeks supported.  相似文献   

7.
Pharyngeal cross-sectional area in normal men and women   总被引:4,自引:0,他引:4  
Pharyngeal size and the dynamic behavior of the upper airway may be important factors in modulating respiratory airflow. Patients with obstructive sleep apnea are known to have reduced pharyngeal cross-sectional area. However, no systematic measurements of pharyngeal area in healthy asymptomatic subjects are available, in part due to the lack of simple, rapid, and noninvasive measurement techniques. We utilized the acoustic reflection technique to measure pharyngeal cross-sectional area in 24 healthy volunteers (14 males, 10 females). Pharyngeal area was measured during a continuous slow expiration from total lung capacity (TLC) to residual volume (RV). We compared pharyngeal cross-sectional areas in males and females at three lung volumes: TLC, 50% of vital capacity (VC), and RV. In males, pharyngeal areas (means +/- SD) were 6.4 +/- 1.3 cm2 at TLC, 5.4 +/- 0.9 cm2 at 50% VC, and 4.1 +/- 0.8 cm2 at RV. In females, pharyngeal areas were 4.8 +/- 0.6 cm2 at TLC, 4.2 +/- 0.5 cm2 at 50% VC, and 3.7 +/- 0.6 cm2 at RV. The difference in area between males and females was statistically significant at TLC and 50% VC but not at RV. However, when the pharyngeal cross-sectional area was normalized for body surface area, this difference was not significant. In males there was a negative correlation of pharyngeal area with age. We conclude that sex differences in pharyngeal area are related to body size, pharyngeal area shows a similar variation with lung volumes in males and females, and in males pharyngeal area reduces with age.  相似文献   

8.
The mechanicaleffects of pharyngeal constrictor (PC) muscle activation on pharyngealairway function were determined in 20 decerebrate, tracheotomized cats.In 10 cats, a high-compliance balloon attached to a pressure transducerwas partially inflated to just occlude the pharyngeal airway. Duringprogressive hyperoxic hypercapnia, changes in pharyngeal balloonpressure were directly related to phasic expiratory hyopharyngeus(middle PC) activity. In two separate protocols in 10 additional cats,the following measurements were obtained with and without bilateralelectrical stimulation (0.2-ms duration, threshold voltage) of thedistal cut end of the vagus nerve's pharyngeal branch supplying PCmotor output: 1) pressure-volumerelationships in an isolated, sealed upper airway at a stimulationfrequency of 30 Hz and 2) rostrally directed axial force over a stimulation frequency range of 0-40 Hz. Airway compliance determined from the pressure-volume relationships decreased with PC stimulation at and below resting airway volume. Compared with the unstimulated condition, PC stimulation increased airway pressure at airway volumes at and above resting volume. Thisconstrictor effect progressively diminished as airway volume wasbrought below resting volume. At relatively low airway volumes belowresting volume, PC stimulation decreased airway pressure compared withthat without stimulation. PC stimulation generated a rostrally directedaxial force that was directly related to stimulation frequency. Theresults indicate that PC activation stiffens the pharyngeal airway,exerting both radial and axial effects. The radial effects aredependent on airway volume: constriction of the airway at relativelyhigh airway volumes, and dilation of the airway at relatively lowairway volumes. The results imply that, under certain conditions, PCmuscle activation may promote pharyngeal airway patency.

  相似文献   

9.
Transmural pressure at any level in the upper airway is dependent on the difference between intraluminal airway and extraluminal tissue pressure (ETP). We hypothesized that ETP would be influenced by topography, head and neck position, resistive loading, and stimulated breathing. Twenty-eight male, New Zealand White, anesthetized, spontaneously breathing rabbits breathed via a face mask with attached pneumotachograph to measure airflow and pressure transducer to monitor mask pressure. Tidal volume was measured via integration of the airflow signal. ETP was measured with a pressure transducer-tipped catheter inserted in the tissues of the lateral (ETPlat, n = 28) and anterior (ETPant, n = 21) pharyngeal wall. Head position was controlled at 30, 50, or 70 degrees, and the effect of addition of an external resistor, brief occlusion, or stimulated breathing was examined. Mean ETPlat was approximately 0.7 cmH2O greater than mean ETPant when adjusted for degree of head and neck flexion (P < 0.05). Mean, maximum, and minimum ETP values increased significantly by 0.7-0.8 cmH2O/20 degrees of head and neck flexion when adjusted for site of measurement (P < 0.0001). The main effect of resistive loading and occlusion was an increase in the change in ETPlat (maximum - minimum ETPlat) and change in ETPant at all head and neck positions (P < 0.05). Mean ETPlat and ETPant increased with increasing tidal volume at head and neck position of 30 degrees (all P < 0.05). In conclusion, ETP was nonhomogeneously distributed around the upper airway and increased with both increasing head and neck flexion and increasing tidal volume. Brief airway occlusion increased the size of respiratory-related ETP fluctuations in upper airway ETP.  相似文献   

10.
To examine the elastic behavior of the upper airway, we obtained pressure-area plots from data gathered from acoustic images of the airway and measurements of mouth pressure during tidal breathing in 10 adult human volunteers (dA/dP). These plots revealed both tidal hysteresis and a change in slope as a function of distance along the airway. The slope of the regression line of the dA/dP plots decreased from the pharyngeal region to the trachea and became 0 at the thoracic inlet, the location of which was independently assessed. In most subjects the slope became negative distal to the thoracic inlet. Correlation coefficients between pressure and area approached 1 in the pharyngeal region and 0 at the thoracic inlet. When subjects breathed against a small resistive load (10 cmH2O.1(-1).s) pharyngeal, extrathoracic, and intrathoracic pressure-area plots were exaggerated but the slope at the thoracic inlet was unchanged. We conclude that this pressure-area characteristic defines regional differences in upper airway elasticity and delineates the transition point between the intra- and extrathoracic airways.  相似文献   

11.
The genioglossus (GG) muscle activity of four infants with micrognathia and obstructive sleep apnea was recorded to assess the role of this tongue muscle in upper airway maintenance. Respiratory air flow, esophageal pressure, and intramuscular GG electromyograms (EMG) were recorded during wakefulness and sleep. Both tonic and phasic inspiratory GG-EMG activity was recorded in each of the infants. On occasion, no phasic GG activity could be recorded; these silent periods were unassociated with respiratory embarrassment. GG activity increased during sigh breaths. GG activity also increased when the infants spontaneously changed from oral to nasal breathing and, in two infants, with neck flexion associated with complete upper airway obstruction, suggesting that GG-EMG activity is influenced by sudden changes in upper airway resistance. During sleep, the GG-EMG activity significantly increased with 5% CO2 breathing (P less than or equal to 0.001). With nasal airway occlusion during sleep, the GG-EMG activity increased with the first occluded breath and progressively increased during the subsequent occluded breaths, indicating mechanoreceptor and suggesting chemoreceptor modulation. During nasal occlusion trials, there was a progressive increase in phasic inspiratory activity of the GG-EMG that was greater than that of the diaphragm activity (as reflected by esophageal pressure excursions). When pharyngeal airway closure occurred during a nasal occlusion trial, the negative pressure at which the pharyngeal airway closed (upper airway closing pressure) correlated with the GG-EMG activity at the time of closure, suggesting that the GG muscle contributes to maintaining pharyngeal airway patency in the micrognathic infant.  相似文献   

12.
To study factors influencing patency and configuration of the upper airway, we studied 11 infant cadavers using endoscopy and photography. In most cases, studies were performed shortly after death. The naso-, oro-, and hypopharynx and the larynx were studied. The upper airway was sealed at the nose and mouth so that transmural airway pressure could be raised or lowered. As pressure was lowered airway closure was seen in each of the four regions studied. With respect to closing pressure, the oropharynx was the most compliant region and the larynx the least compliant. In the naso-, oro-, and hypopharynx, lowering the transmural pressure was associated with inward movement of the anterior, posterior, and lateral airway walls. In the larynx, closure occurred by vocal cord opposition in the midline. Tension applied to the genioglossus and geniohyoid tongue muscles had an effect opposite to that of airway suction, causing a more or less symmetrical dilation of the naso- and oropharynx. When the airway was closed, additional tension was needed to produce airway reopening, suggesting that adhesion forces act to maintain airway closure. Neck flexion caused pharyngeal closure, and neck extension caused pharyngeal dilation. Secretions adherent to the walls of the airway visibly narrowed its lumen. The relevance of these findings for the obstructive sleep apnea and laryngomalacia syndromes is discussed.  相似文献   

13.
We used the acoustic reflection technique to measure the cross-sectional area of tracheal and bronchial airway segments of eight healthy adults. We measured airway area during a slow continuous expiration from total lung capacity (TLC) to residual volume (RV) and during inspiration back to TLC. Lung volume and esophageal pressure were monitored continuously during this quasi-static, double vital capacity maneuver. We found that 1) the area of tracheal and bronchial segments increases with increasing lung volume and transpulmonary pressure, 2) the trachea and bronchi exhibit a variable degree of hysteresis, which may be greater or less than that of the lung parenchyma, 3) extrathoracic and intrathoracic tracheal segments behaved as if they were subjected to similar transmural pressure and had similar elastic properties, and 4) specific compliance (means +/- SE) for the intrathoracic and bronchial segments, calculated with the assumption that transmural pressure is equal to the transpulmonary pressure, was significantly (P less than 0.05) smaller for the intrathoracic segment than for the bronchial segment: (2.1 +/- 2.0) X 10(-3) cmH2O-1 vs. (9.1 +/- 2.1) X 10(-3) cmH2O-1. Direct measurements of airway area using acoustic reflections are in good agreement with previous estimates of airway distensibility in vivo, obtained by radiography or endoscopy.  相似文献   

14.
The extreme conditions under which multi-hop underwater acoustic sensor networks (UASNs) operate constrain the performance of medium access control (MAC) protocols. The MAC protocol employed significantly impacts the operation of the network supported, and such impacts must be carefully considered when developing protocols for networks constrained by both bandwidth and propagation delay.  相似文献   

15.
The collapsibility of pharyngeal walls, characteristic of patients with obstructive sleep apnea, likely results from reduced tone of the pharyngeal muscles. This reduction in the upper airway muscle tone may not end at the pharynx but may extend further distally, e.g., into the trachea. Because tracheal tone cannot be measured directly in conscious humans, we inferred the tone from the relative hysteresis of the tracheal area compared with the lung. Relative hysteresis was measured by plotting the cross-sectional area of a tracheal segment obtained by the acoustic reflection technique vs. lung volume. All measurements were performed during wakefulness. We found that in 42 patients with obstructive sleep apnea (apnea/hypopnea index greater than 10), relative hysteresis of the proximal trachea was predominantly clockwise, i.e., smaller than that of the lung parenchyma; in the 33 nonapneic patients (apnea/hypopnea index less than or equal to 10), it was predominantly counter-clockwise, i.e., larger than that of the lung parenchyma. For the distal trachea all patients, apneic and nonapneic, had similar, clockwise, relative hysteresis. We conclude that reduction in the upper airway muscle tone in patients with obstructive sleep apnea extends into the trachea.  相似文献   

16.
Effect of position and lung volume on upper airway geometry   总被引:7,自引:0,他引:7  
The occurrence of upper airway obstruction during sleep and with anesthesia suggests the possibility that upper airway size might be compromised by the gravitational effects of the supine position. We used an acoustic reflection technique to image airway geometry and made 180 estimates of effective cross-sectional area as a function of distance along the airway in 10 healthy volunteers while they were supine and also while they were seated upright. We calculated z-scores along the airway and found that pharyngeal cross-sectional area was smaller in the supine than in the upright position in 9 of the 10 subjects. For all subjects, pharyngeal cross-sectional area was 23 +/- 8% smaller in the supine than in the upright position (P less than or equal to 0.05), whereas glottic and tracheal areas were not significantly altered. Because changing from the upright to the supine position causes a decrease in functional residual capacity (FRC), six of these subjects were placed in an Emerson cuirass, which was evacuated producing a positive transrespiratory pressure so as to restore end-expiratory lung volume to that seen before the position change. In the supine posture an increase in end-expiratory lung volume did not change the cross-sectional area at any point along the airway. We conclude that pharyngeal cross-sectional area decreases as a result of a change from the upright to the supine position and that the mechanism of this change is independent of the change in FRC.  相似文献   

17.
It is theorized that the total stretch time in a day is more important than the actual single stretch duration time. The purpose of this study was to compare 2 stretching protocols, keeping total stretching time equivalent. The 2 protocols were a 10-second duration stretch and a 30-second duration stretch. Although the stretch durations differed, the total stretching time over the course of a day was held constant at 2 minutes for both protocols. Participants were randomly assigned a protocol to each of their legs: subjects stretched 1 leg with the 10-second protocol and the opposite leg with the 30-second protocol. The 10-second stretch was repeated 6 times for a total of 1 minute; the 30-second protocol was repeated 2 times for a total of 1 minute. Stretching was performed twice daily (a total of 2 minutes each day) for 6 weeks. All stretching was performed to the hamstring muscles. Hip flexion measurements were recorded at pretest, 3-weeks, and 6-weeks. Subjects demonstrated significant gains in range of motion for hip flexion over the course of 6 weeks, p = 0.000. No differences existed between the 2 protocols. Range of motion gains were equal between the 2 stretching protocols. The common denominator was total stretch time for a day. Regardless of the duration of a single stretch, the key to improvement was the total daily stretch time. These findings are important as they allow clinicians and individuals to customize stretching protocols to meet individual needs.  相似文献   

18.
Positional changes of anatomic structures surrounding the upper airway are known to affect pharyngeal mechanics and collapsibility. We hypothesized that these alterations also affect the ability of the upper airway dilator muscles to enlarge the pharynx by altering their ability to shorten when activated. Using sonomicrometry, we evaluated in seven anesthetized dogs the effects of changes in tracheal and head position on the length of the genioglossus (GG) and the geniohyoid (GH) and the effects of these positional changes on the magnitude of shortening of the two muscles in response to electro- (ES) and chemostimulation (CS). Caudal traction of the trachea lengthened the GG and GH in all dogs, whereas cranial displacement of the trachea and flexion of the head to a vertical position shortened the muscles. Compared with the magnitude of ES-induced shortening in the neutral position, ES-induced shortening of the GG was 144.7 +/- 14.6, 49.3 +/- 4.3, and 33.5 +/- 11.6% during caudal and cranial displacement of the trachea and during head flexion, respectively. Similar effects of the positional changes were found for the GH, as well as for both muscles during respiratory stimulation with P(CO2) of 90 Torr at the end of CO(2) rebreathing, although inspiratory muscle shortening during CS reached only one-quarter to one-third of the magnitude observed during ES. We conclude that positional alterations of anatomic structures in the neck have a dramatic effect on the magnitude of shortening of the activated GG and GH, which may reduce substantially their ability to protect pharyngeal patency.  相似文献   

19.
Phrenic nerve stimulation (PNS) can assess airflow dynamics of the upper airway (UA) during wakefulness in man. Using PNS, we aimed to assess the impact of neck flexion and mouth opening in promoting UA unstability. Measurements were made during nasal breathing in seven healthy subjects (ages = 23-39 yr; one woman). Surface diaphragm electromyogram, esophageal pressure referenced to mask pressure, and flow were recorded during diaphragm twitches with neck in neutral position and mouth closed and then with neck flexion and/or mouth opening. Twitches always exhibited a flow-limited pattern. Flow-limiting driving pressure (Pd) and peak Pd were increased by neck flexion (P < 0.01) without significant change in the corresponding flows. UA resistances at these flow values were higher with the neck flexed (P < 0.05). Mouth opening alone did not exert any significant influence. We conclude that the position of the neck has a discernible impact on the flow behavior through the nonphasically active UA faced with a negative Pd.  相似文献   

20.
Influence of passive changes of lung volume on upper airways   总被引:5,自引:0,他引:5  
The total upper airway resistances are modified during active changes in lung volume. We studied nine normal subjects to assess the influence of passive thoracopulmonary inflation and deflation on nasal and pharyngeal resistances. With the subjects lying in an iron lung, lung volumes were changed by application of an extrathoracic pressure (Pet) from 0 to 20 (+Pet) or -20 cmH2O (-Pet) in 5-cmH2O steps. Upper airway pressures were measured with two low-bias flow catheters, one at the tip of the epiglottis and the other in the posterior nasopharynx. Breath-by-breath resistance measurements were made at an inspiratory flow rate of 300 ml/s at each Pet step. Total upper airway, nasal, and pharyngeal resistances increased with +Pet [i.e., nasal resistance = 139.6 +/- 14.4% (SE) of base-line and pharyngeal resistances = 189.7 +/- 21.1% at 10 cmH2O of +Pet]. During -Pet there were no significant changes in nasal resistance, whereas pharyngeal resistance decreased significantly (pharyngeal resistance = 73.4 +/- 7.4% at -10 cmH2O). We conclude that upper airway resistance, particularly the pharyngeal resistance, is influenced by passive changes in lung volumes, especially pulmonary deflation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号