首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel pyrimidone analogues have been designed and synthesized as HIV-1 integrase (IN) inhibitors. This study demonstrated that introducing a substituent in the N1-position of the pyrimidone scaffold does not significantly influence IN inhibitory activity. Molecular docking studies showed these compounds could occupy the IN active site and form pi–pi interactions with viral DNA nucleotides DC16 and DA17 to displace reactive viral DNA 3′OH and block intasome activity.  相似文献   

2.
Thiazolothiazepines are among the smallest and most constrained inhibitors of human immunodeficiency virus type-1 integrase (HIV-1 IN) inhibitors (J. Med. Chem. 1999, 42, 3334). Previously, we identified two thiazolothiazepines lead IN inhibitors with antiviral activity in cell-based assays. Structural optimization of these molecules necessitated the design of easily synthesizable analogs. In order to design similar molecules with least number of substituent, herein we report the synthesis of 10 novel analogs. One of the new compounds (1) exhibited similar potency as the reference compounds, confirming that a thiazepinedione fused to a naphthalene ring system is the best combination for the molecule to accommodate into the IN active site. Thus, the replacement of sulfur in the thiazole ring with an oxygen does not seem considerably affect potency. On the other hand, the introduction of an extra methyl group at position 1 of the polycyclic system or the shift from a thiazepine to an oxazepine skeleton decreased potency. In order to understand their mode of interactions with IN active site, we docked all the compounds onto the previously reported X-ray crystal structure of IN. We observed that compounds 7-9 occupied an area close to D64 and Mg(2+) and surrounded by amino acid residues K159, K156, N155, E152, D116, H67, and T66. The oxygen atom of the oxazolo ring of 7 and 8 could chelate Mg(2+). These results indicate that the new analogs potentially interact with the highly conserved residues important for IN catalytic activities.  相似文献   

3.
A series of seven novel, rationally designed N-substituted 3-{3,5-dimethylfuro[3,2-g]coumarin-6-yl}propanamides have been prepared as potential HIV-1 integrase (IN) inhibitors via a five-step pathway commencing with resorcinol and diethyl 2-acetylglutarate, and the HIV-1 IN inhibition potential of these compounds has been examined relative to raltegravir, a known HIV-1 IN inhibitor.  相似文献   

4.
The previously discovered salicylhydrazide class of compounds displayed potent HIV-1 integrase (IN) inhibitory activity. The development of this class of compounds as antiretroviral agents was halted due to cytotoxicity in the nanomolar to sub-micromolar range. We identified a novel class of non-cytotoxic hydrazide IN inhibitors utilizing the minimally required salicylhydrazide substructure as a template in a small-molecule database search. The novel hydrazides displayed low micromolar IN inhibitory activity and are several hundred-fold less cytotoxic than previously disclosed salicylhydrazide IN inhibitors.  相似文献   

5.
Effect of substitution on novel tricyclic HIV-1 integrase inhibitors   总被引:1,自引:0,他引:1  
A series of novel tricyclic inhibitors of HIV-1 integrase enzyme was prepared. The effect of substitution at C-6 of the 9-hydroxy-6,7-dihydropyrrolo[3,4-g]quinolin-8-one compounds was studied in vitro. Inhibitors with small side chains at C-6 were generally well tolerated by the enzyme, and the physicochemical properties of the inhibitors were improved by substitution of a small alkyl group at this position. A second series of analogs bearing a sulfamate at the C-5 position with various C-6 substituents were prepared to explore the interplay between the two groups. The SAR of the two classes are not parallel; modification at C-5 impacts the effect of substitutions at C-6.  相似文献   

6.
Previously, we discovered linomide analogues as novel HIV-1 integrase (IN) inhibitors. Here, to make possible structure–activity relationships, we report on the design and synthesis of a series of substituted dihydroquinoline-3-carboxylic acids. The crystal structure of the representative compound 2c has also been solved. Among the eight new analogues, 2e showed a potency in inhibiting IN strand transfer catalytic activity similar to the reference diketo acid inhibitor L-731,988 (IC50 = 0.9 μM vs. 0.54 μM, for 2e and L-731,988, respectively). Furthermore, none of the compounds showed significant cytotoxicity in two tested cancer cell lines. These compounds represent an interesting prototype of IN inhibitors, potentially involved in a metal chelating mechanism, and further optimization is warranted.  相似文献   

7.
HIV-1 integrase is a critical enzyme in the replication of HIV-1. It is absent in the host cells and therefore is a good target for treatment of HIV-1 infections. Integracides are members of the tetracyclic triterpenoids family that were isolated from the fermentation broth of a Fusarium sp. Integracide A, a sulfated ester, exhibited significant inhibitory activity against strand transfer reaction of HIV-1 integrase. The discovery, structure elucidation including single crystal X-ray structure and HIV-1 inhibitory activity of these compounds are described.  相似文献   

8.
Molecular interaction field, density functional, and docking studies of novel potential ferrocene inhibitors of HIV-1 integrase (IN) are reported. The high docking scores, analysis of the ligand-receptor interactions in the active site as well as the molecular interaction potential calculations at the binding site of the receptor indicate important features for novel HIV-1 IN inhibitors. We also confirm in this work a novel binding trench in HIV-1 integrase, recently reported in a theoretical work by other authors. This observation may be interesting since the lack of detailed structural information about IN-ligand interactions has hampered the design of IN inhibitors. Our proposed ligands are open to experimental synthesis and testing.  相似文献   

9.
Insights into the binding modes on HIV-1 integrase of our novel dinucleotide inhibitors (pisodApdC and pdCpisodU) have been obtained using molecular docking experiments. In contrast to their base-stacked unbound state, these dinucleotides in their integrase-bound state prefer unstacked conformations for a more extensive interaction with the active site. The calculated free energies of binding are in concert with the experimentally acquired anti-HIV-1 integrase data.  相似文献   

10.
A series of nitrogen-containing polyhydroxylated aromatics from caffeic acid phenethyl ester were designed and synthesized as HIV-1 integrase inhibitors. Most of these compounds exhibited potent inhibitory activities at micromolar concentrations against HIV-1 integrase in the 3′-end processing and the strand transfer. Their key structure–activity relationship was also discussed.  相似文献   

11.
HIV-1 integrase is an essential enzyme for viral replication and a validated target for the development of drugs against AIDS. With an aim to discover new potent inhibitors of HIV-1 integrase, we developed a pharmacophore model based on reported inhibitors embodying structural diversity. Eight compounds of 2-pyrrolinones fitting all the features of the pharmacophore query were found through the screening of an in-house database. These candidates were successfully synthesized, and three of them showed strand transfer inhibitory activity, in which, one compound showed antiviral activity. Further mapping analysis and docking studies affirmed these results.  相似文献   

12.
Dihydroxypyridopyrazine-1,6-dione HIV-1 integrase inhibitors   总被引:1,自引:0,他引:1  
A series of potent novel dihydroxypyridopyrazine-1,6-dione HIV-1 integrase inhibitors was identified. These compounds inhibited the strand transfer process of HIV-1 integrase and viral replication in cells. Compound 6 is active against replication of HIV with a CIC(95) of 0.31 microM and exhibits no shift in potency in the presence of 50% normal human serum. It displays a good pharmacokinetic profile when dosed in rats and no covalent binding with microsomal proteins in both in vitro and in vivo models.  相似文献   

13.
A three-dimensional pharmacophore model has been generated for HIV-1 integrase (HIV-1 IN) from known inhibitors. A dataset consisting of 26 inhibitors was selected on the basis of the information content of the structures and activity data as required by the catalyst/HypoGen program. Our model was able to predict the activity of other known HIV-1 IN inhibitors not included in the model generation, and can be further used to identify structurally diverse compounds with desired biological activity by virtual screening.  相似文献   

14.
A novel compound inhibiting HIV-1 integrase has been identified by means of virtual screening techniques. A small family of structurally related molecules has been synthesized and biologically evaluated with some of the compounds possessing micromolar activity both in enzymatic and cellular assays.  相似文献   

15.
A series of 4-aminopyrimidines (1) was identified as novel HIV inhibitors of unknown molecular target. Structural modifications were carried out to establish its SAR and identify the linking site for target identification. A number of analogs were found to possess single digit inhibitory activity for HIV replication. Several analogs with various potential linkers, including a biotinated analog, also exhibited excellent potency, and could serve as tools for the identification of novel anti-HIV targets.  相似文献   

16.
The beta-diketoacid class of HIV-1 integrase (IN) inhibitors represent the first potent class of compounds specific for the strand transfer catalytic activity of the viral enzyme. Previously, utilizing a beta-diketoacid pharmacophore as a search query, we identified a substituted 2-pyrrolinone with modest IN inhibitory activity from a database of small-molecules [Dayam, R.; Sanchez, T.; Neamati, N. J. Med. Chem.2005, 48, 8009]. In efforts to optimize this class of IN inhibitors, we carried out a structure-activity relationship analysis around the 2-pyrrolinone core. Here, we present a new class of 2-pyrrolinone IN inhibitors.  相似文献   

17.
A number of 2,6-bisbenzylidenecyclohexane-1-one derivatives have been synthesized and tested as HIV-1 integrase (IN) inhibitors with the aim of obtaining compounds capable to elicit antiviral activity at non-cytotoxic concentrations in cell-based assays. 3,5-Bis(3,4,5-trihydroxybenzylidene)-4-oxocyclohexaneacetic acid (20d) resulted one of the most potent and selective derivatives in acutely infected MT-4 cells (EC(50) and CC(50) values of 2 and 40 microM, respectively). In enzyme assays with recombinant HIV-1 integrase (rIN), this compound proved able to inhibit both 3'-processing and disintegration with IC(50) values of 0.2 and 0.5 microM, respectively. In order to develop a model capable to predict the anti HIV-IN activity and useful to design novel derivatives, we performed a comparative molecular field analysis (CoMFA) like 3-D-QSAR. In our model the ligands were described quantitatively in the GRID program, and the model was optimized by selecting only the most informative variables in the GOLPE program. We found the predictive ability of the model to increase significantly when the number of variables was reduced from 20,925 to 1327. A Q(2) of 0.73 was obtained with the final model, confirming the predictive ability of the model. By studying the PLS coefficients in informative 3-D contour plots, ideas for the synthesis of new compounds could be generated.  相似文献   

18.
19.
Aryl beta-diketo acids (ADK) comprise a general class of potent HIV-1 integrase (IN) inhibitors, which can exhibit selective inhibition of strand transfer reactions in extracellular recombinant IN assays and provide potent antiviral effects in HIV-infected cells. Recent studies have shown that polycyclic aryl or aryl rings bearing aryl-containing substituents are components of potent members of this class. Reported herein is the first use of azido functionality as an aryl replacement in beta-diketo acid IN inhibitors. The ability of azido-containing inhibitors to exhibit potent inhibition of IN and antiviral protection in HIV-infected cells, renders the azide group of potential value in the further development of ADK-based IN inhibitors.  相似文献   

20.
A series of naphthyridinone HIV-1 integrase strand-transfer inhibitors have been designed based on a psdeudo-C2 symmetry element present in the two-metal chelation pharmacophore. A combination of two distinct inhibitor binding modes resulted in potent inhibition of the integrase strand-transfer reaction in the low nM range. Effects of aryl and N1 substitutions are disclosed including the impact on protein binding adjusted antiviral activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号