首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In C. elegans the 4-cell stage blastomere EMS is an endomesodermal precursor. Its anterior daughter, MS, makes primarily mesodermal cells, while its posterior daughter E generates the entire intestine. The gene regulatory network underlying specification of MS and E has been the subject of study for more than 15 years. A key component of the specification of the two cells is the involvement of the Wnt/β-catenin asymmetry pathway, which through its nuclear effector POP-1, specifies MS and E as different from each other. Loss of pop-1 function results in the mis-specification of MS as an E-like cell, because POP-1 directly represses the end-1 and end-3 genes in MS, which would otherwise promote an endoderm fate. A long-standing question has been whether POP-1 plays a role in specifying MS fate beyond repression of endoderm fate. This question has been difficult to ask because the only chromosomal lesions that remove both end-1 and end-3 are large deletions removing hundreds of genes. Here, we report the construction of bona fide end-1 end-3 double mutants. In embryos lacking activity of end-1, end-3 and pop-1 together, we find that MS fate is partially restored, while E expresses early markers of MS fate and adopts characteristics of both MS and C. Our results suggest that POP-1 is not critical for MS specification beyond repression of endoderm specification, and reveal that Wnt-modified POP-1 and END-1/3 further reinforce E specification by repressing MS fate in E. By comparison, a previous work suggested that in the related nematode C. briggsae, Cb-POP-1 is not required to repress endoderm specification in MS, in direct contrast with Ce-POP-1, but is critical for repression of MS fate in E. The findings reported here shed new light on the flexibility of combinatorial control mechanisms in endomesoderm specification in Caenorhabditis.  相似文献   

3.
4.
5.
6.
7.
In the canonical Wnt pathway, signaling results in the stabilization and increased levels of β-catenin in responding cells. β-catenin then enters the nucleus, functioning as a coactivator for the Wnt effector, TCF/LEF protein. In the absence of Wnt signaling, TCF is complexed with corepressors, together repressing Wnt target genes. In C. elegans, Wnt signaling specifies the E blastomere to become the endoderm precursor. Activation of endoderm genes in E requires not only an increase in β-catenin level, but a concomitant decrease in the nuclear level of POP-1, the sole C. elegans TCF. A decrease in nuclear POP-1 levels requires Wnt-induced phosphorylation of POP-1 and 14-3-3 protein-mediated nuclear export. Nuclear POP-1 levels remain high in the sister cell of E, MS, where POP-1 represses the expression of endoderm genes. Here we express three vertebrate TCF proteins (human TCF4, mouse LEF1 and Xenopus TCF3) in C. elegans embryos and compare their localization, repression and activation functions to POP-1. All three TCFs are localized to the nucleus in C. elegans embryos, but none undergoes Wnt-induced nuclear export. Although unable to undergo Wnt-induced nuclear export, human TCF4, but not mouse LEF1 or Xenopus TCF3, can repress endoderm genes in MS, in a manner very similar to POP-1. This repressive activity requires that human TCF4 recognizes specific promoter sequences upstream of endoderm genes and interacts with C. elegans corepressors. Domain swapping identified two regions of POP-1 that are sufficient to confer nuclear asymmetry to human TCF4 when swapped with its corresponding domains. Despite undergoing Wnt-induced nuclear export, the human TCF4/POP-1 chimeric protein continues to function as a repressor for endoderm genes in E, a result we attribute to the inability of hTCF4 to bind to C. elegans β-catenin. Our results reveal a higher degree of species specificity among TCF proteins for coactivator interactions than for corepressor interactions, and uncover a basic difference between how POP-1 and human TCF4 steady state nuclear levels are regulated.  相似文献   

8.
9.
In Caenorhabditis elegans, Wnt signaling pathways are important in controlling cell polarity and cell migrations. In the embryo, a novel Wnt pathway functions through a (beta)-catenin homolog, WRM-1, to downregulate the levels of POP-1/Tcf in the posterior daughter of the EMS blastomere. The level of POP-1 is also lower in the posterior daughters of many anteroposterior asymmetric cell divisions during development. I have found that this is the case for of a pair of postembryonic blast cells in the tail. In wild-type animals, the level of POP-1 is lower in the posterior daughters of the two T cells, TL and TR. Furthermore, in lin-44/Wnt mutants, in which the polarities of the T cell divisions are frequently reversed, the level of POP-1 is frequently lower in the anterior daughters of the T cells. I have used a novel RNA-mediated interference technique to interfere specifically with pop-1 zygotic function and have determined that pop-1 is required for wild-type T cell polarity. Surprisingly, none of the three C. elegans (beta)-catenin homologs appeared to function with POP-1 to control T cell polarity. Wnt signaling by EGL-20/Wnt controls the migration of the descendants of the QL neuroblast by regulating the expression the Hox gene mab-5. Interfering with pop-1 zygotic function caused defects in the migration of the QL descendants that mimicked the defects in egl-20/Wnt mutants and blocked the expression of mab-5. This suggests that POP-1 functions in the canonical Wnt pathway to control QL descendant migration and in novel Wnt pathways to control EMS and T cell polarities.  相似文献   

10.
11.
C. elegans embryos exhibit an invariant lineage comprised primarily of a stepwise binary diversification of anterior-posterior (A-P) blastomere identities. This binary cell fate specification requires input from both the Wnt and MAP kinase signaling pathways. The nuclear level of the TCF protein POP-1 is lowered in all posterior cells. We show here that the beta-catenin SYS-1 also exhibits reiterated asymmetry throughout multiple A-P divisions and that this asymmetry is reciprocal to that of POP-1. Furthermore, we show that SYS-1 functions as a coactivator for POP-1, and that the SYS-1-to-POP-1 ratio appears critical for both the anterior and posterior cell fates. A high ratio drives posterior cell fates, whereas a low ratio drives anterior cell fates. We show that the SYS-1 and POP-1 asymmetries are regulated independently, each by a subset of genes in the Wnt/MAP kinase pathways. We propose that two genetic pathways, one increasing SYS-1 and the other decreasing POP-1 levels, robustly elevate the SYS-1-to-POP-1 ratio in the posterior cell, thereby driving A-P differential cell fates.  相似文献   

12.
13.
14.
Lin R 《Developmental biology》2003,258(1):226-239
In vertebrates, oocytes undergo maturation, arrest in metaphase II, and can then be fertilized by sperm. Fertilization initiates molecular events that lead to the activation of early embryonic development. In Caenorhabditis elegans, where no delay between oocyte maturation and fertilization is apparent, oocyte maturation and fertilization must be tightly coordinated. It is not clear what coordinates the transition from an oocyte to an embryo in C. elegans, but regulated turnover of oocyte-specific proteins contributes to the process. We describe here a gain-of-function mutation (zu405) in a gene that is essential for oocyte maturation, oma-1. In wild type animals, OMA-1 protein is expressed at a high level exclusively in oocytes and newly fertilized embryos and is degraded rapidly after the first mitotic division. The zu405 mutation results in improper degradation of the OMA-1 protein in embryos. In oma-1(zu405) embryos, the C blastomere is transformed to the EMS blastomere fate, resulting in embryonic lethality. We show that degradation of several maternally supplied cell fate determinants, including SKN-1, PIE-1, MEX-3, and MEX-5, is delayed in oma-1(zu405) mutant embryos. In wild type embryos, SKN-1 functions in EMS for EMS blastomere fate specification. A decreased level of maternal SKN-1 protein in the C blastomere relative to EMS is believed to be responsible for this cell expressing the C, instead of the EMS, fate. Delayed degradation of maternal SKN-1 protein in oma-1(zu405) embryos and resultant elevated levels in C blastomere is likely responsible for the observed C-to-EMS blastomere fate transformation. These observations suggest that oma-1, in addition to its role in oocyte maturation, contributes to early embryonic development by regulating the temporal degradation of maternal proteins in early C. elegans embryos.  相似文献   

15.
16.
In vertebrates, striated muscle development depends on both the expression of members of the myogenic regulatory factor family (MRFs) and on extrinsic cellular cues, including Wnt signaling. The 81 embryonically born body wall muscle cells in C. elegans are comparable to the striated muscle of vertebrates. These muscle cells all express the gene hlh-1, encoding HLH-1 (CeMyoD) which is the only MRF-related factor in the nematode. However, genetic studies have shown that body wall muscle development occurs in the absence of HLH-1 activity, making the role of this factor in nematode myogenesis unclear. By ectopically expressing hlh-1 in early blastomeres of the C. elegans embryo, we show that CeMyoD is a bona fide MRF that can convert almost all cells to a muscle-like fate, regardless of their lineage of origin. The window during which ectopic HLH-1 can function is surprisingly broad, spanning the first 3 hours of development when cell lineages are normally established and non-muscle cell fate markers begin to be expressed. We have begun to explore the maternal factors controlling zygotic hlh-1 expression. We find that the Caudal-related homeobox factor PAL-1 can activate hlh-1 in blastomeres that either lack POP-1/TCF or that have down-regulated POP-1/TCF in response to Wnt/MAP kinase signaling. The potent myogenic activity of HLH-1 highlights the remarkable developmental plasticity of early C. elegans blastomeres and reveals the evolutionary conservation of MyoD function.  相似文献   

17.
18.
The Caenorhabditis elegans vulva is comprised of highly similar anterior and posterior halves that are arranged in a mirror symmetric pattern. The cell lineages that form each half of the vulva are identical, except that they occur in opposite orientations with respect to the anterior/posterior axis. We show that most vulval cell divisions produce sister cells that have asymmetric levels of POP-1 and that the asymmetry has opposite orientations in the two halves of the vulva. We demonstrate that lin-17 (Frizzled type Wnt receptor) and lin-18 (Ryk) regulate the pattern of POP-1 localization and cell type specification in the posterior half of the vulva. In the absence of lin-17 and lin-18, posterior lineages are reversed and resemble anterior lineages. These experiments suggest that Wnt signaling pathways reorient cell lineages in the posterior half of the vulva from a default orientation displayed in the anterior half of the vulva.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号