首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The effect of glutathione depletion on cellular toxicity of cadmium was investigated in a subpopulation (T27) of human lung carcinoma A549 cells with coordinately high glutathione levels and Cd++-resistance. Cellular glutathione levels were depleted by exposing the cells to diethyl maleate or buthionine sulfoximine. Depletion was dose-dependent. Exposure of the cells to 0.5 mM diethyl maleate for 4 hours or to 10 mM buthionine sulfoximine for 8 hours eliminated the threshold for Cd++ cytotoxic effect and deccreased the LD50S. Cells that were pretreated with 0.5 mM diethyl maleate or 10 mM buthionine sulfoximine and then exposed to these same concentrations of diethyl maleate or buthionine sulfoximine during the subsequent assay for colony forming efficiency produced no colonies, reflecting an enhanced sensitivity to these agents at low cell density. Diethyl maleate was found to be more cytotoxic than buthionine sulfoximine. Synergistic cytotoxic effects were observed in the response of diethyl maleate pretreated cells exposed to Cd++. Thus the results demostrated that depletion of most cellular glutathione in A549-T27 cells prior to Cd++ exposure sensitizes them to the agent's cytotoxic effects. Glutathione thus may be involved in modulating the early cellular Cd++ cytotoxic response. Comparison of reduced glutathione levels and of Cd++ cytotoxic responses in buthionine sulfoximine-treated A549-T27 cells with those levels in other, untreated normal and tumor-derived cells suggests that the higher level of glutathione in A549-T27 is not the sole determinant of its higher level of Cd++ resistance.Abbreviations BSO DL-buthionine-(R,S)-sulfoximine - DEM diethyl maleate - DMSO dimethyl sulfoxide - GSH reduced glutathione - MT metallothionein  相似文献   

2.
Glutathione (GSH) plays a central role in the redox balance maintenance in mammalian cells. Previous studies of industrial Chinese hamster ovary cell lines have demonstrated a relationship between GSH metabolism and clone productivity. However, a thorough investigation is required to understand this relationship and potentially highlight new targets for cell engineering. In this study, we have modulated the GSH intracellular content of an industrial cell line under bioprocess conditions to further elucidate the role of the GSH synthesis pathway. Two strategies were used: the variation of cystine supply and the direct inhibition of the GSH synthesis using buthionine sulfoximine (BSO). Over time of the bioprocess, a correlation between intracellular GSH and product titer has been observed. Analysis of metabolites uptake/secretion rates and proteome comparison between BSO-treated cells and nontreated cells has highlighted a slowdown of the tricarboxylic acid cycle leading to a secretion of lactate and alanine in the extracellular environment. Moreover, an adaptation of the GSH-related proteome has been observed with an upregulation of the regulatory subunit of glutamate–cysteine ligase and a downregulation of a specific GSH transferase subgroup, the Mu family. Surprisingly, the main impact of BSO treatment was observed on a global downregulation of the cholesterol synthesis pathways. As cholesterol is required for protein secretion, it could be the missing piece of the puzzle to finally elucidate the link between GSH synthesis and productivity.  相似文献   

3.
A study of the involvement of glutathione (GSH) in cellular resistance to cisplatin was performed using methylmercury-resistant sublines (PC12/TM series) of the PC12 line of rat pheochromocytoma cells. The seven clonal sublines of PC12 cells (PC12/TM, PC12/TM2, PC12/TM5, PC12/TM11, PC12/TM15, PC12/TM23, PC12/TM26) used in the study had intracellular levels of GSH that ranged from 8.7–39.9 nmol/mg protein. The intracellular level of GSH was significantly correlated (p < 0.01, r = 0.87) with the sensitivity to cisplatin of PC12 cells and the seven sublines. Among the seven sublines, PC12/TM cells contained the highest concentration of GSH and were the most resistant to cisplatin. Treatment of PC12/TM cells with L-buthionine-SR-sulfoximine, which reduced the level of GSH to that in the parental PC12 cells, significantly reduced the resistance of the cells to cisplatin. The amount of platinum accumulated by resistant PC12/TM cells after treatment with cisplatin was higher than that by sensitive PC12 cells. These results suggest that the intracellular level of GSH might be directly involved in the resistance to cisplatin of these cell lines. However, a high intracellular concentration of GSH does not appear to contribute to a decrease in the accumulation of cisplatin in these cells.  相似文献   

4.
Esterase D (ESD) is a nonspecific esterase widely distributed in various organisms. ESD plays an important role in regulating cholesterol efflux, inhibiting viral replication and lung cancer growth. MT2A (metallothionein 2A) is the most important isoform of metallothionein (MTs) in human and high expression of MT2A in tumors represents poor prognosis and metastatic behavior. However, there are no reports about the molecular mechanism of ESD in the regulation of tumor metastasis. In this study, we found for the first time that activation ESD promoted its interaction with MT2A and decreased the protein level of MT2A, which resulting in the concentration of free zinc ions up-regulated, and inhibited the migration of A549 lung cancer cells in vitro.  相似文献   

5.
Mechanism of testicular toxicity induced by dietary cadmium (Cd) has been less investigated than that following acute Cd injection. In the present study we characterized testicular injury in a small rodent, the bank vole, exposed subchronically to dietary Cd in a quantity of 0.9 mol/g, and determined the importance of some factors (Cd accumulation, metallothionein (MT), oxidative stress, and zinc (Zn)) in the injury. Dietary Cd induced moderate histopathological changes (hemorrhage in interstitium, necrosis and apoptosis in seminiferous tubule epithelium) in young (1 month old) bank voles fed, for 6 weeks, Fe-adequate (1.1–1.4 mol/g) and Fe-enriched (4.5–4.8 mol/g) diets. In contrast, adult (5 months old) bank voles appeared to be resistant to the toxic effects of dietary Cd, despite the fact that testicular Cd contents were higher and MT levels lower than those in the young animals. The Cd-induced histopathological changes and apoptosis were accompanied by increased testicular lipid peroxidation, decreased testicular Zn concentration and elevated levels of hepatic and renal MT and Zn. Supplemental dietary Zn (1.7–1.8 mol/g) prevented the Cd-induced testicular Zn depletion and injury. The data indicate that dietary Cd produces testicular lesions indirectly, through decreasing testicular Zn, which seems to be due to the sequestration of this element by the Cd-induced hepatic and renal MT.  相似文献   

6.
When illuminated leaf discs and detached leaves of spinach ( Spinacia oleracea L. cv. Estivato) were exposed to 0.4 and 0.25 μl 1-1 H2S, respectively, pool sizes of cysteine and glutathione increased. In the dark, apart from these compounds, the level of γ-glutamyl-cysteine also increased. Incubation of leaf discs with 1.0 m M buthionine sulfoximine (BSO) resulted in the accumulation of cysteine only, both in the light and in darkness. When glycine was supplied to the petioles of detached leaves exposed to H2S in the dark, the accumulation of glutathione was stimulated, while γ-glutamyl-cysteine accumulation was prevented completely. Glycolate and glyoxylate, precursors of glycine in the glycolate pathway, had nearly the same effect as glycine. Although other amino acids were apparently taken up equally well as glycine when supplied to the petiole, they were much less effective, or not effective at all, in restoring glutathione synthesis in the dark. These results provide evidence, that H2S-induced glutathione accumulation in spinach leaves in the dark is limited by the availability of glycine, giving rise to the accumulation of the metabolic precursor γ-glutamyl-cysteine.  相似文献   

7.
We tested whether zoledronic acid, a biphosphonate with proposed apoptotic activity, augmented the cytotoxicity of cisplatin and/or gemcitabine in A549 lung cancer cell line. This cell line was subjected to different concentrations of the above chemotherapeutic agents and zoledronic acid. Cytotoxicity was assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) assay. Particularly, zoledronic acid in 100 micromolar (microM) concentration augmented the cytotoxicity by cisplatin 1microg/ml from 25% to 70% (Z=3.22, P=0.0072). A significant portion of cells underwent apoptosis with or without zoledronic acid, but more so with the combination treatment as assessed by an Annexin V-FITC apoptosis detection kit. However, 100microM zoledronic acid showed 50% cytotoxicity on its own, but failed to improve cytotoxicity by Gemcitabine. Thus, we show for the first time in a lung cancer cell line that zoledronic acid bears cytotoxic potential on its own and in conjunction with cisplatin. The clinical potential of this finding should be further studied.  相似文献   

8.
The effectiveness of Zn at moderating the pro-oxidant effects of Cu was evaluated in two rat models that differed in the route and mode of administration. The endpoints investigated included measurement of the concentrations of Cu, Zn, metallothionein and glutathione concentrations, as well as SOD and catalase activity, in liver, kidneys and intestine. In a sub-chronic animal model, the hepatic accumulation of Cu was achieved by administration of dietary Cu (1.8 g/kg solid diet) for 30 days after which oral Zn (6g/kg solid diet) was given. Cu treatment induced an increase in the hepatic and intestinal concentration of Cu of 66 and 455%, respectively, that was not associated with synthesis of metallothionein synthesis, but rather appeared to be related to the higher activity of SOD. Subsequent administration with Zn after dietary Cu induced an increase in the hepatic and intestinal metallothionein content of more twice and reduced the Cu content to control values. Thus, Zn could act as both a competitor for absorption on the luminal side of the intestinal epithelium inducing the synthesis of metallothionein. In the second animal model, we studied the effects of interaction between Cu and Zn administered by i.p. injection at the dose of 3 and 10mg/kg, respectively; Zn was administered subsequent to Cu overload. In this case, when Zn was administered, Cu was already deposited in tissues and thus there is no competition between two metals at the level of membrane transport. In this experimental model treatment with Cu alone induced liver metallothionein synthesis, and the subsequent treatment with Zn did not decrease the hepatic content of Cu. One explanation for these observations is that Zn induces the synthesis of metallothionein, which binds Cu for which it has a higher affinity. Moreover, after treatment with Zn, SOD activity in the liver decreases of almost 30% with respect to treatment with alone Cu, suggesting that Zn has a protective effect.  相似文献   

9.

Objectives

Our previous in vitro study showed that 5‐(3, 4, 5‐trimethoxybenzoyl)‐4‐methyl‐2‐(p‐tolyl) imidazol (BZML) is a novel colchicine binding site inhibitor with potent anti‐cancer activity against apoptosis resistance in A549/Taxol cells through mitotic catastrophe (MC). However, the mechanisms underlying apoptosis resistance in A549/Taxol cells remain unknown. To clarify these mechanisms, in the present study, we investigated the molecular mechanisms of apoptosis and autophagy, which are closely associated with MC in BZML‐treated A549 and A549/Taxol cells.

Methods

Xenograft NSCLC models induced by A549 and A549/Taxol cells were used to evaluate the efficacy of BZML in vivo. The activation of the mitochondrial apoptotic pathway was assessed using JC‐1 staining, Annexin V‐FITC/PI double‐staining, a caspase‐9 fluorescence metric assay kit and western blot. The different functional forms of autophagy were distinguished by determining the impact of autophagy inhibition on drug sensitivity.

Results

Our data showed that BZML also exhibited desirable anti‐cancer activity against drug‐resistant NSCLC in vivo. Moreover, BZML caused ROS generation and MMP loss followed by the release of cytochrome c from mitochondria to cytosol in both A549 and A549/Taxol cells. However, the ROS‐mediated apoptotic pathway involving the mitochondria that is induced by BZML was only fully activated in A549 cells but not in A549/Taxol cells. Importantly, we found that autophagy acted as a non‐protective type of autophagy during BZML‐induced apoptosis in A549 cells, whereas it acted as a type of cytoprotective autophagy against BZML‐induced MC in A549/Taxol cells.

Conclusions

Our data suggest that the anti‐apoptosis property of A549/Taxol cells originates from a defect in activation of the mitochondrial apoptotic pathway, and autophagy inhibitors can potentiate BZML‐induced MC to overcome resistance to mitochondrial apoptosis.
  相似文献   

10.
11.
Tissue nonspecific alkaline phosphatase (TNAP) has a well established role in bone homeostasis and in hepatic/biliary conditions. In addition, TNAP is expressed in the inflamed intestine and is relevant to T and B lymphocyte function. TNAP KO mice are only viable for a few days, but TNAP+/? haplodeficient mice are viable. Acute pancreatitis was induced by repeated caerulein injection in WT and TNAP+/? mice. TNAP+/? mice presented an increased expression of Cxcl2, Ccl2, Selplg (P-selectin ligand), Il6 and Il1b in the pancreas. Freshly isolated acinar cells showed a dramatic upregulation of Cxcl1, Cxcl2, Ccl2, Il6, Selpg or Bax in both pancreatitis groups. TNAP+/? cells displayed a 2-fold higher expression of Cxcl2, and a smaller increase in Il6. These findings could be partly replicated by in vitro treatment of primary acinar cells with caerulein. Furthermore, the proinflammatory effect on acinar cells could be partially reproduced in wild type cells treated with the TNAP inhibitor levamisole. TNAP mRNA levels were also markedly upregulated by pancreatitis in acinar cells. Neutrophil infiltration (MRP8+ cells) and activation (IL-6 and TNF production in LPS treated primary neutrophils) were increased in TNAP+/? vs WT mice. Neutrophil depletion greatly attenuated inflammation, indicating that this cell type is mainly responsible for the higher inflammatory status of TNAP+/? mice. In conclusion, our results show that altered TNAP expression results in heightened pancreatic inflammation, which may be explained by an augmented response of neutrophils and by a higher sensitivity of acinar cells to caerulein injury.  相似文献   

12.
Cytotoxic studies using an azo compound HPAN and its Co(II) complex were carried out on non-small lung epithelium carcinoma (A549) cells and peripheral blood mononuclear (PBM) cells. The results obtained suggest that the Co(II) complex is much less toxic toward both cell lines and the decreased toxicity due to the complex was more pronounced with carcinoma A549 cells. An attempt was made to correlate the findings related to cytotoxicity with the interaction of the compounds with DNA using calf thymus DNA as the target. The study was able to conclude that the complex was a relatively weak binder to calf thymus DNA. This information was used to explain the interaction of azo compounds with DNA in peripheral blood mononuclear cells and A549 lung carcinoma cells. It was concluded that the Co(II) complex interacts with DNA to a much lesser extent than HPAN alone. Cyclic voltammetry experiments carried out with HPAN and the Co(II) complex further showed that the presence of the metal ion in the complex prevents reduction of the azo group to such species that are responsible for inducing cytotoxicity. The overall finding was that complex formation with azo compounds might serve as a possible route to curb their toxicities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号