首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although phosphatidylinositol transfer proteins (PITPs) are known to serve critical functions in regulating a varied array of signal transduction processes in animals and yeast, the discovery of a similar class of proteins in plants occurred only recently. Here, we report the participation of Ssh1p, a soybean PITP-like protein, in the early events of osmosensory signal transduction in plants, a function not attributed previously to animal or yeast PITPs. Exposure of plant tissues to hyperosmotic stress led to the rapid phosphorylation of Ssh1p, a modification that decreased its ability to associate with membranes. An osmotic stress-activated Ssh1p kinase activity was detected in several plant species by presenting recombinant Ssh1p as a substrate in in-gel kinase assays. Elements of a similar osmosensory signaling pathway also were conserved in yeast, an observation that facilitated the identification of soybean protein kinases SPK1 and SPK2 as stress-activated Ssh1p kinases. This study reveals the activation of SPK1 and/or SPK2 and the subsequent phosphorylation of Ssh1p as two early successive events in a hyperosmotic stress-induced signaling cascade in plants. Furthermore, Ssh1p is shown to enhance the activities of a plant phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase, an observation that suggests that the ultimate function of Ssh1p in cellular signaling is to alter the plant's capacity to synthesize phosphoinositides during periods of hyperosmotic stress.  相似文献   

2.
Prinz A  Hartmann E  Kalies KU 《Biological chemistry》2000,381(9-10):1025-1029
A characteristic feature of the co-translational protein translocation into the endoplasmic reticulum (ER) is the tight association of the translating ribosomes with the translocation sites in the membrane. Biochemical analyses identified the Sec61 complex as the main ribosome receptor in the ER of mammalian cells. Similar experiments using purified homologues from the yeast Saccharomyces cerevisiae, the Sec61p complex and the Ssh1p complex, respectively, demonstrated that they bind ribosomes with an affinity similar to that of the mammalian Sec61 complex. However, these studies did not exclude the presence of other proteins that may form abundant ribosome binding sites in the yeast ER. We now show here that similar to the situation found in mammals in the yeast Saccharomyces cerevisiae the two Sec61-homologues Sec61p and Ssh1p are essential for the formation of high-affinity ribosome binding sites in the ER membrane. The number of binding sites formed by Ssh1p under standard growth conditions is at least 4 times less than those formed by Sec61p.  相似文献   

3.
Yeast microsomes contain a heptameric Sec complex involved in post-translational protein transport that is composed of a heterotrimeric Sec61p complex and a tetrameric Sec62-Sec63 complex. The trimeric Sec61p complex also exists as a separate entity that probably functions in co-translational protein transport, like its homolog in mammals. We have now discovered in the yeast endoplasmic reticulum membrane a second, structurally related trimeric complex, named Ssh1p complex. It consists of Ssh1p1 (Sec sixty-one homolog 1), a rather distant relative of Sec61p, of Sbh2p, a homolog of the Sbh1p subunit of the Sec61p complex, and of Sss1p, a component common to both trimeric complexes. In contrast to Sec61p, Ssh1p is not essential for cell viability but it is required for normal growth rates. Sbh1p and Sbh2p individually are also not essential, but cells lacking both proteins are impaired in their growth at elevated temperatures and accumulate precursors of secretory proteins; microsomes isolated from these cells also exhibit a reduced rate of post-translational protein transport. Like the Sec61p complex, the Ssh1p complex interacts with membrane-bound ribosomes, but it does not associate with the Sec62-Sec63p complex to form a heptameric Sec complex. We therefore propose that it functions exclusively in the co-translational pathway of protein transport.  相似文献   

4.
Monomeric transport of lipids is carried out by a class of proteins that can shield a lipid from the aqueous environment by binding the lipid in a hydrophobic cavity. One such group of proteins is the phosphatidylinositol transfer proteins (PITP) that can bind phosphatidylinositol and phosphatidylcholine and transfer them from one membrane compartment to another. PITPs are found in both unicellular and multicellular organisms but not bacteria. In mice and humans, the PITP domain responsible for lipid transfer is found in five proteins, which can be classified into two classes based on sequence. Class I PITPs comprises two family members, alpha and beta, small 35 kDa proteins with a single PITP domain which are ubiquitously expressed. Class IIA PITPs (RdgBalphaI and II) are larger proteins possessing additional domains that target the protein to membranes and are only able to bind lipids but not mediate transfer. Finally, Class IIB PITP (RdgBbeta) is similar to Class I in size (38 kDa) and is also ubiquitously expressed. Class III PITPs, exemplified by the Sec14p family, are found in yeast and plants but are unrelated in sequence and structure to Class I and Class II PITPs. In this review we discuss whether PITP proteins are passive transporters or are regulated proteins that are able to couple their transport and binding properties to specific biological functions including inositol lipid signalling and membrane turnover.  相似文献   

5.
大豆类钙调磷酸酶B亚基GmCBL1互作候选蛋白的筛选   总被引:2,自引:0,他引:2  
Ca2+是非生物胁迫信号转导途径中的重要信号分子,植物类钙调磷酸酶B亚基蛋白(CBL,calcineurin B-like proteins)是一类重要的钙信号受体蛋白,主要通过与其他蛋白的特异结合传递信号,使植物形成对非生物胁迫的响应。本实验室已经获得大豆Gm CBL1基因,功能鉴定显示Gm CBL1增强了转基因拟南芥对非生物胁迫的耐性。为了进一步研究Gm CBL1的作用机理,本研究构建诱饵载体p GBKT7::Gm CBL1,利用酵母双杂交技术筛选大豆Gm CBL1的互作蛋白。通过对筛选获得的106个蛋白基因测序和Blast比对分析,并根据其可能的生理功能对这些候选蛋白归类,整理得到4类蛋白:能量代谢相关蛋白、修饰蛋白、防御蛋白、钙信号转导相关蛋白。筛选得到候选蛋白的功能预测初步表明,大豆Gm CBL1参与多条信号途径,为进一步研究探索大豆CBL介导的抗逆信号转导途径奠定了基础。  相似文献   

6.
Phosphatidylinositol transfer proteins (PITPs) can bind specifically and transfer a single phosphatidylinositol (PI) molecule between phospholipid membranes in an ATP-independent manner in vitro. PITPs exist in all the eukaryotic systems from yeast to human. PITP plays an essential role in intracellular vesicle flow and inositol lipid signaling. The crystal structure of yeast PITP Sec14p reveals a large hydrophobic pocket to accommodate the acyl chains of phospholipid molecules. At the opening of the pocket, a hydrogen bond network may render Sec14p the binding specificity to PI molecules. The structure suggests that the PI-binding ability may play an important role in the in vivo function of PITPs.  相似文献   

7.
The ubiquitylation of membrane proteins destined for the vacuole/lysosome is essential for their recognition by the endosomal sorting machinery and their internalization into vesicles of multivesicular bodies (MVBs). In yeast, this process requires Rsp5p, an essential ubiquitin ligase of the Nedd4 family. We describe here two redundant proteins, Ear1p and Ssh4p, required for the vacuolar targeting of several cargoes originating from the Golgi or the plasma membrane. Ear1p is an endosomal protein that interacts with Rsp5p through its PPxY motifs, and it is required for the ubiquitylation of selected cargoes before their MVB sorting. In-frame fusion of cargo to ubiquitin overcomes the need for Ear1p/Ssh4p, confirming a role for these proteins in cargo ubiquitylation. Interestingly, Ear1p is itself ubiquitylated by Rsp5p and targeted to the vacuole. Finally, Ear1p overexpression leads to Rsp5p accumulation at endosomes, interfering with some of its functions in trafficking. Therefore, Ear1p/Ssh4p recruit Rsp5p and assist it in its function at MVBs by directing the ubiquitylation of specific cargoes.  相似文献   

8.
Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi function and cell viability. We now report a characterization of five yeast SFH (Sec Fourteen Homologue) proteins that share 24-65% primary sequence identity with Sec14p. We show that Sfh1p, which shares 64% primary sequence identity with Sec14p, is nonfunctional as a Sec14p in vivo or in vitro. Yet, SFH proteins sharing low primary sequence similarity with Sec14p (i.e., Sfh2p, Sfh3p, Sfh4p, and Sfh5p) represent novel phosphatidylinositol transfer proteins (PITPs) that exhibit phosphatidylinositol- but not phosphatidylcholine-transfer activity in vitro. Moreover, increased expression of Sfh2p, Sfh4p, or Sfh5p rescues sec14-associated growth and secretory defects in a phospholipase D (PLD)-sensitive manner. Several independent lines of evidence further demonstrate that SFH PITPs are collectively required for efficient activation of PLD in vegetative cells. These include a collective requirement for SFH proteins in Sec14p-independent cell growth and in optimal activation of PLD in Sec14p-deficient cells. Consistent with these findings, Sfh2p colocalizes with PLD in endosomal compartments. The data indicate that SFH gene products cooperate with "bypass-Sec14p" mutations and PLD in a complex interaction through which yeast can adapt to loss of the essential function of Sec14p. These findings expand the physiological repertoire of PITP function in yeast and provide the first in vivo demonstration of a role for specific PITPs in stimulating activation of PLD.  相似文献   

9.
Ssh1p of Saccharomyces cerevisiae is related in sequence to Sec61p, a general receptor for signal sequences and the major subunit of the channel that guides proteins across the membrane of the endoplasmic reticulum. The split-ubiquitin technique was used to determine whether Ssh1p serves as an additional receptor for signal sequences in vivo. We measured the interactions between the N(ub)-labeled Ssh1p and C(ub)-translocation substrates bearing four different signal sequences. The so-determined interaction profile of Ssh1p was compared with the signal sequence interaction profile of the correspondingly modified N(ub)-Sec61p. The assay reveals interactions of Ssh1p with the signal sequences of Kar2p and invertase, whereas Sec61p additionally interacts with the signal sequences of Mfalpha1 and carboxypeptidase Y. The measured physical proximity between Ssh1p and the beta-subunit of the signal sequence recognition particle receptor confirms our hypothesis that Ssh1p is directly involved in the cotranslational translocation of proteins across the membrane of the endoplasmic reticulum.  相似文献   

10.
Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi secretory function. It is widely accepted, though unproven, that phosphatidylinositol transfer between membranes represents the physiological activity of phosphatidylinositol transfer proteins (PITPs). We report that Sec14pK66,239A is inactivated for phosphatidylinositol, but not phosphatidylcholine (PC), transfer activity. As expected, Sec14pK66,239A fails to meet established criteria for a PITP in vitro and fails to stimulate phosphoinositide production in vivo. However, its expression efficiently rescues the lethality and Golgi secretory defects associated with sec14-1ts and sec14 null mutations. This complementation requires neither phospholipase D activation nor the involvement of a novel class of minor yeast PITPs. These findings indicate that PI binding/transfer is remarkably dispensable for Sec14p function in vivo.  相似文献   

11.
12.
Sec14-like phosphatidylinositol transfer proteins (PITPs) play important biological functions in integrating multiple aspects of intracellular lipid metabolism with phosphatidylinositol-4-phosphate signaling. As such, these proteins offer new opportunities for highly selective chemical interference with specific phosphoinositide pathways in cells. The first and best characterized small molecule inhibitors of the yeast PITP, Sec14, are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs), and a hallmark feature of NPPMs is their exquisite targeting specificities for Sec14 relative to other closely related Sec14-like PITPs. Our present understanding of Sec14::NPPM binding interactions is based on computational docking and rational loss-of-function approaches. While those approaches have been informative, we still lack an adequate understanding of the basis for the high selectivity of NPPMs among closely related Sec14-like PITPs. Herein, we describe a Sec14 motif, which we term the VV signature, that contributes significantly to the NPPM sensitivity/resistance of Sec14-like phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer proteins. The data not only reveal previously unappreciated determinants that govern Sec14-like PITP sensitivities to NPPMs, but enable predictions of which Sec14-like PtdIns/PtdCho transfer proteins are likely to be NPPM resistant or sensitive based on primary sequence considerations. Finally, the data provide independent evidence in support of previous studies highlighting the importance of Sec14 residue Ser173 in the mechanism by which NPPMs engage and inhibit Sec14-like PITPs.  相似文献   

13.
Sec61p is required both for protein translocation and dislocation across the membrane of the endoplasmic reticulum (ER). However, the cellular role of the Sec61p homolog Ssh1p has not been clearly defined. We show that deltassh1 mutant cells have strong defects in both SRP-dependent and -independent translocation. Moreover, these cells were also found to be induced for the unfolded protein response and to be defective in dislocation of a misfolded ER protein. In addition, deltassh1 mutant cells rapidly became respiratory deficient. The other defects discussed above were suppressed in the respiratory-deficient state or under conditions where the rate of polypeptide translation was artificially reduced. These data identify Ssh1p as a component of a second, functionally distinct translocon in the yeast ER membrane.  相似文献   

14.
Phosphatidylinositol/phosphatidylcholine transfer proteins (PITPs) remain largely functionally uncharacterized, despite the fact that they are highly conserved and are found in all eukaryotic cells thus far examined by biochemical or sequence analysis approaches. The available data indicate a role for PITPs in regulating specific interfaces between lipid-signaling and cellular function. In this regard, a role for PITPs in controlling specific membrane trafficking events is emerging as a common functional theme. However, the mechanisms by which PITPs regulate lipid-signaling and membrane-trafficking functions remain unresolved. Specific PITP dysfunctions are now linked to neurodegenerative and intestinal malabsorption diseases in mammals, to stress response and developmental regulation in higher plants, and to previously uncharacterized pathways for regulating membrane trafficking in yeast and higher eukaryotes, making it clear that PITPs are integral parts of a highly conserved signal transduction strategy in eukaryotes. Herein, we review recent progress in deciphering the biological functions of PITPs, and discuss some of the open questions that remain.  相似文献   

15.
Phospholipase D (PLD) is a PtdCho-hydrolyzing enzyme that plays central signaling functions in eukaryotic cells. We previously demonstrated that action of a set of four nonclassical and membrane-associated Sec14p-like phosphatidylinositol transfer proteins (PITPs) is required for optimal activation of yeast PLD in vegetative cells. Herein, we focus on mechanisms of Sfh2p and Sfh5p function in this regulatory circuit. We describe several independent lines of in vivo evidence to indicate these SFH PITPs regulate PLD by stimulating PtdIns-4,5-P2 synthesis and that this stimulated PtdIns-4,5-P2 synthesis couples to action of the Stt4p PtdIns 4-kinase. Furthermore, we provide genetic evidence to suggest that specific subunits of the yeast exocyst complex (i.e. a component of the plasma membrane vesicle docking machinery) and the Sec9p plasma membrane t-SNARE are regulated by PtdIns(4,5)P2 and that Sfh5p helps regulate this interface in vivo. The collective in vivo and biochemical data suggest SFH-mediated stimulation of Stt4p activity is indirect, most likely via a substrate delivery mechanism.  相似文献   

16.
17.
Flooding stress has negative impact on soybean cultivation as it severely impairs plant growth and development. To examine whether nuclear function is affected in soybean under flooding stress, abundance of nuclear proteins and their mRNA expression were analyzed. Two-day-old soybean seedlings were treated with flooding for 2 days, and nuclear proteins were purified from root tips. Gel-free proteomics analysis identified a total of 39 flooding-responsive proteins, of which abundance of 8 and 31 was increased and decreased, respectively, in soybean root tips. Among these differentially regulated proteins, the mRNA expression levels of five nuclear-localized proteins were further analyzed. The mRNA levels of four proteins, which are splicing factor PWI domain-containing protein, epsilon2-COP, beta-catenin, and clathrin heavy chain decreased under flooding stress, were also down-regulated. In addition, mRNA level of a receptor for activated protein kinase C1(RACK1) was down-regulated, though its protein was accumulated in the soybean nucleus in response to flooding stress. These results suggest that several nuclear-related proteins are decreased at both the protein and mRNA level in the root tips of soybean under flooding stress. Furthermore, RACK1 might have an important role with accumulation in the soybean nucleus under flooding-stress conditions.  相似文献   

18.
19.
20.
PITPs (phosphatidylinositol transfer proteins) are characterized by the presence of the PITP domain whose biochemical properties of binding and transferring PI (phosphatidylinositol) are well studied. Despite their wide-spread expression in both unicellular and multicellular organisms, they remain functionally uncharacterized. An emerging theme is that individual PITPs play highly specific roles in either membrane trafficking or signal transduction. To identify specific roles for PITPs, identification of interacting molecules would shed light on their molecular function. In the present paper, we describe binding partners for the class IIB PITP RdgBβ (retinal degeneration type?Bβ). RdgBβ is a soluble PITP but is unique in that it contains a region of disorder at its C-terminus following its defining N-terminal PITP domain. The C-terminus of RdgBβ is phosphorylated at two serine residues, Ser274 and Ser299, which form a docking site for 14-3-3 proteins. Binding to 14-3-3 proteins protects RdgBβ from degradation that occurs at the proteasome after ubiquitination. In addition to binding 14-3-3, the PITP domain of RdgBβ interacts with the Ang II (angiotensin II)-associated protein ATRAP (Ang II receptor-associated protein). ATRAP is also an interacting partner for the AT1R (Ang II type?1 receptor). We present a model whereby RdgBβ functions by being recruited to the membrane by ATRAP and release of 14-3-3 from the C-terminus allows the disordered region to bind a second membrane to create a membrane bridge for lipid transfer, possibly under the control of Ang II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号