首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To identify parameters of Leishmania infection within a population of infected sand flies that reliably predict subsequent transmission to the mammalian host, we sampled groups of infected flies and compared infection intensity and degree of metacyclogenesis with the frequency of transmission. The percentage of parasites within the midgut that were metacyclic promastigotes had the highest correlation with the frequency of transmission. Meta-analysis of multiple transmission experiments allowed us to establish a percent-metacyclic "cutoff" value that predicted transmission competence. Sand fly infections initiated with variable doses of parasites resulted in correspondingly altered percentages of metacyclic promastigotes, resulting in altered transmission frequency and disease severity. Lastly, alteration of sand fly oviposition status and environmental conditions at the time of transmission also influenced transmission frequency. These observations have implications for transmission of Leishmania by the sand fly vector in both the laboratory and in nature, including how the number of organisms acquired by the sand fly from an infection reservoir may influence the clinical outcome of infection following transmission by bite.  相似文献   

2.
Leishmania infantum nicotinamidase, encoded by the Lipnc1 gene, converts nicotinamide into nicotinicacid to ensure Nicotinamide–Adenine–Dinucleotide (NAD+) biosynthesis. We were curious to explore the role of this enzyme during L. infantum development in its natural sand fly vector, Phlebotomus perniciosus (Diptera, Phlebotominae), using null mutants with a deleted Lipnc1 gene. The null mutants developed as well as the wild type L. infantum at the early time points post their ingestion within the bloodmeal. In contrast, once the blood meal digestion was completed, the null mutants were unable to develop further and establish late-stage infections. Data highlight the importance of the nicotinamide degradation pathway for Leishmania development in sand flies. They indicate that the endogenous nicotinamidase is essential for Leishmania development in the sand fly after the blood meal has been digested and the remnants defecated.  相似文献   

3.
The genome sequencing of several Leishmania species has provided immense amounts of data and allowed the prediction of the metabolic pathways potentially operating. Subsequent genetic and proteomic studies have identified stage-specific proteins and putative virulence factors but many aspects of the metabolic adaptations of Leishmania remain to be elucidated. In this study, we have used an untargeted metabolomics approach to analyze changes in the metabolite profile as promastigotes of L. donovani develop during in vitro cultures from logarithmic to stationary phase. The results show that the metabolomes of promastigotes on days 3-6 of culture differ significantly from each other, consistent with there being distinct developmental changes. Most notable were the structural changes in glycerophospholipids and increase in the abundance of sphingolipids and glycerolipids as cells progress from logarithmic to stationary phase.  相似文献   

4.
5.
For many arthropod vectors, the diverse bacteria and fungi that inhabit the gut can negatively impact pathogen colonization. Our attempts to exploit antibiotic treatment of colonized Phlebotomus duboscqi sand flies in order to improve their vector competency for Leishmania major resulted instead in flies that were refractory to the development of transmissible infections due to the inability of the parasite to survive and to colonize the anterior midgut with infective, metacyclic stage promastigotes. The parasite survival and development defect could be overcome by feeding the flies on different symbiont bacteria but not by feeding them on bacterial supernatants or replete medium. The inhibitory effect of the dysbiosis was moderated by lowering the concentration of sucrose (<30% w/v) used in the sugar feeds to maintain the colony. Exposure of promastigotes to 30% sucrose was lethal to the parasite in vitro. Confocal imaging revealed that the killing in vivo was confined to promastigotes that had migrated to the anterior plug region, corresponding to the highest concentrations of sucrose. The data suggest that sucrose utilization by the microbiota is essential to promote the appropriate osmotic conditions required for the survival of infective stage promastigotes in vivo.  相似文献   

6.
Monoclonal antibodies D2 and D13 were produced in mice using Leishmania donovani promastigote membrane fractions. To study the species and stage specificity of the antigens recognized by these antibodies, we examined amastigotes prepared in vitro and cultured promastigotes by indirect immunofluorescence with monoclonal antibodies D2 and D13. Monoclonal antibody D2 showed weak reactivity for 9 of 9 strains of L. donovani complex promastigotes and 8 of 9 amastigotes. In contrast, only 2 of 22 strains from other complexes yielded equivocal reactions. Monoclonal antibody D13, however, had much broader reactivity. D13 reacted with all the promastigotes and amastigotes of L. donovani complex isolates as well as with 10 of 22 promastigotes and 8 of 13 amastigotes from other complexes. The high degree of species specificity seen with monoclonal antibody D2 provides a rationale for further study of this antibody and its purified antigen for parasite identification and serodiagnosis of visceral leishmaniasis. The strong fluorescent signal noted with D13 and the presence of the D13 epitope on all L. donovani complex parasites supports studies on its role as an antigen in immunoprophylaxis of visceral leishmaniasis.  相似文献   

7.
Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In "selective" sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the "selective" fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both 'poly-scGal' and 'null-scGal' lines survived poorly relative to PpapJ-sympatric L. major FV1 and other 'mono-scGal' lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing 'null-scGal'-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a 'PpapJ-optimal' scGal-LPG PAMP. Unexpectedly, these "L. major FV1-cloaked" L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific 'mono-scGal' pattern. However, failure of 'mono-scGal' L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is "selective" or "permissive", with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania.  相似文献   

8.
This study describes the synthesis of fluorescent probes as potential substrates for the polyamine transport system (PTS) of Leishmania donovani. A competitive radioassay was used to determine the most efficient probe. We observed that the conjugate spermine-nitrobenzofurazan (Spm-NBD) was able to compete with [3H]-spermidine in L. donovani at a potent IC50 of 60 µM.  相似文献   

9.
In nature the prevalence of Leishmania infection in whole sand fly populations can be very low (<0.1%), even in areas of endemicity and high transmission. It has long since been assumed that the protozoan parasite Leishmania can manipulate the feeding behavior of its sand fly vector, thus enhancing transmission efficiency, but neither the way in which it does so nor the mechanisms behind such manipulation have been described. A key feature of parasite development in the sand fly gut is the secretion of a gel-like plug composed of filamentous proteophosphoglycan. Using both experimental and natural parasite-sand fly combinations we show that secretion of this gel is accompanied by differentiation of mammal-infective transmission stages. Further, Leishmania infection specifically causes an increase in vector biting persistence on mice (re-feeding after interruption) and also promotes feeding on multiple hosts. Both of these aspects of vector behavior were found to be finely tuned to the differentiation of parasite transmission stages in the sand fly gut. By experimentally accelerating the development rate of the parasites, we showed that Leishmania can optimize its transmission by inducing increased biting persistence only when infective stages are present. This crucial adaptive manipulation resulted in enhanced infection of experimental hosts. Thus, we demonstrate that behavioral manipulation of the infected vector provides a selective advantage to the parasite by significantly increasing transmission.  相似文献   

10.
The most abundant surface glycoconjugate of the Leishmania promastigotes is lipophosphoglycan, a glycosylphosphatidyl-inositol-anchored polymer of the repeating disaccharide-phosphate Gal(beta1,4)Manalpha1-PO4 unit. This complex molecule possesses properties that contribute to the ability of Leishmania to modulate macrophage signaling pathways during the initiation of infection.  相似文献   

11.
A A Ne?fakh 《Ontogenez》1974,5(6):614-622
The participation of paternal genome was studied in the development of remote hybrids obtained as a result of artificial insemination of the loach (Misgurnus fossilis) eggs by the sperm of aquarial Cyprinids (Brachydanio rerio, Danio malabaricus, Barbus tetrazona, Razbora heteromorpha, Carassius auratus) and Cobitids (Acanthophtalmus kuhlii). The hybrids obtained differed at the stage of hatching both from each other and from the loach by some morphological features. To study the function of heterologous nuclei, haploid nucleocytoplasmic hybrids were obtained by means of chromosome inactivation in the loach eggs by heavy doses of X-rays. The participation of paternal genome in development was estimated by comparison of the curves of viability of diploid and haploid hybrids with those of diploid, haploid and "anuclear" loach embryos. Patterns of mortality of embryos and larvae in each hybrid combination (percentage, stage) suggest the functioning of paternal genome already at the early stages of development. The activity of hybrid and heterologous nuclei was also estimated by the onset and the intensity of morphogenetic function which was determined by the time of embryonic death following nuclear inactivation at different stages. The onset of nuclear function in all hybrids coinsides with that in the loach, except B. rerio in which it occurs somewhat earlier. The data obtained prove the participation of paternal genes in development and maintenance of viability of embryos at all developmental stages beginning from the early ones (blastula).  相似文献   

12.
An in vitro assay was developed to study the recognition mechanism for attachment of Leishmania flagella to sand fly midgut epithelium. Frozen sections of sand fly guts were incubated with flagella preparations, and probed with a flagella-specific monoclonal antibody. Tissue-specific adhesion of flagella to midgut epithelium was demonstrated by indirect immunofluorescence. None of the 13 sugars, screened to test for possible lectin-mediation, appeared to significantly inhibit the adhesion of flagella to gut sections. Similarly no inhibition was achieved by incubating flagella with pep 63 which inhibits the promastigote-macrophage recognition mechanism. Significant inhibition was attained by incubating flagella preparations with a monoclonal antibody which binds to a flagellar membrane-component. The possible relevance of the described mechanism for the biology of Leishmania in their sand fly hosts, is discussed.  相似文献   

13.
The pathogenic intracellular parasites Leishmania donovani cycle between sand fly gut and the human macrophage phagolysosome, differentiating from extracellular promastigotes to intracellular amastigote forms. Using isobaric tagging for relative and absolute quantifications (iTRAQ/LC-MS/MS) proteomic methodology, we recently described the ordered gene expression changes during this process. While protein abundance changes in Leishmania were documented, little is known about their PTMs. Here we used iTRAQ to detect protein phosphorylation, methylation, acetylation, and glycosylation sites throughout differentiation. We found methylation of arginines, aspartic acids, glutamic acids, asparagines, and histidines. Detected acetylation sites included serines and protein N-terminal acetylations on methionines, serines, alanines, and threonines. Phosphorylations were detected on serines and threonines, but not tyrosines. iTRAQ identified novel fucosylation sites as well as hexosylations. We observed quantity changes in some modifications during differentiation, suggesting a role in L. donovani intracellular development. This study is the first high-throughput analysis of PTM sites dynamics during an intracellular parasitic development.  相似文献   

14.
Leishmania promastigotes are introduced into the skin by blood-sucking phlebotomine sand flies. In the vertebrate host, promastigotes invade macrophages, transform into amastigotes and multiply intracellularly. Sand fly saliva was shown to enhance the development of cutaneous leishmaniasis lesions by inhibiting some immune functions of the host macrophages. This study demonstrates that sand fly saliva promotes parasite survival and proliferation. First, macrophages gravitated towards increasing concentrations of sand fly saliva in vitro. Secondly, saliva increased the percentage of macrophages that became infected with Leishmania promastigotes and exacerbated the parasite load in these cells. Thus, during natural transmission, saliva probably reduces the exposure of promastigotes to the immune system by attracting macrophages to the parasite inoculation site and by accelerating the entry of promastigotes into macrophages. Saliva may also enhance lesion development by shortening the generation time of dividing intracellular amastigotes.  相似文献   

15.
Lutzomyia cruciata Coquillet (Diptera: Psychodidae: Phlebotominae) is a potential vector of Leishmania sp.; its geographical distribution in Mexico is widespread, but its life history is unknown. The present study gives relevant information on the life cycle, morphology, survival and reproduction of Lu. cruciata observed over successive generations under laboratory conditions. Seven successive generations were produced. A total of 975 adults were obtained in a sexual proportion of 1.1 : 1 (female : male). Each Lu. cruciata female produced 20.7 eggs and 1.9 adults, approximately, with a proportion of eggs per female of 2.7% (first generation) and 21.3% (second generation). The life cycle of Lu. cruciata, from egg to adult, occurred in 52.7 ± 0.52 days. The largest percentage of mortality occurred during the egg stage (48.5%) and the first larval instar (26.5%), whereas in the pupal stage mortality was the lowest (9.1%). Lutzomyia cruciata exhibits sexual dimorphism based on size, which is exhibited as of the second larval instar, males being smaller than females. The maximum survival of females and males was 10 and 15 days, respectively. An overview of the immature stages of the species made with an electronic scanning microscope is included. This paper contributes basic information on aspects of Lu. cruciata that were previously unknown related to its life history.  相似文献   

16.
Female phlebotomine sand flies Lutzomyia longipalpis naturally harbor populations of the medically important Leishmania infantum (syn. Leishmania chagasi) parasite in the gut, but the extent to which the parasite interacts with the immune system of the insect vector is unknown. To investigate the sand fly immune response and its interaction with the Leishmania parasite, we identified a homologue for caspar, a negative regulator of immune deficiency signaling pathway. We found that feeding antibiotics to adult female L. longipalpis resulted in an up-regulation of caspar expression relative to controls. caspar was differentially expressed when females were fed on gram-negative and gram-positive bacterial species. caspar expression was significantly down-regulated in females between 3 and 6 days after a blood feed containing Leishmania mexicana amastigotes. RNA interference was used to deplete caspar expression in female L. longipalpis, which were subsequently fed with Leishmania in a blood meal. Sand fly gut populations of both L. mexicana and L. infantum were significantly reduced in caspar-depleted females. The prevalence of L. infantum infection in the females fell from 85 to 45%. Our results provide the first insight into the operation of immune homeostasis in phlebotomine sand flies during the growth of bacterial and Leishmania populations in the digestive tract. We have demonstrated that the activation of the sand fly immune system, via depletion of a single gene, can lead to the abortion of Leishmania development and the disruption of transmission by the phlebotomine sand fly.  相似文献   

17.
18.
Leishmaniases are serious parasitic diseases the etiological organisms of which are transmitted by insect vectors, phlebotominae sand flies. Two sand fly species, Phlebotomus papatasi and P. sergenti, display remarkable specificity for Leishmania parasites they transmit in nature, but many others are broadly permissive to the development of different Leishmania species. Previous studies have suggested that in 'specific' vectors the successful parasite development is mediated by parasite surface glycoconjugates and sand fly lectins, however we show here that interactions involving 'permissive' sand flies utilize another molecules. We did find that the abundant surface glycoconjugate lipophosphoglycan, essential for attachment of Leishmania major in the specific vector P. papatasi, was not required for parasite adherence or survival in the permissive vectors P. arabicus and Lutzomyia longipalpis. Attachment in several permissive sand fly species instead correlated with the presence of midgut glycoproteins bearing terminal N-acetyl-galactosamine and with the occurrence of a lectin-like activity on Leishmania surface. This new binding modality has important implications for parasite transmission and evolution. It may contribute to the successful spreading of Leishmania due to their adaptation into new vectors, namely transmission of L. infantum by Lutzomyia longipalpis; this event led to the establishment of L. infantum/chagasi in Latin America.  相似文献   

19.
Within the mammalian host, Leishmania donovani is an obligatory intracellular protozoan that resides and multiplies exclusively in the phagolysosomes of macrophages. The outcome of this infection is governed by the interaction between Leishmania and macrophage molecules that ultimately effect the expression of genes within both cells. To explore the effect of this intracellular infection on macrophage gene expression, a cDNA expression array analysis was performed to compare gene expression profiles in noninfected and L. donovani-infected macrophages. In this manner, it was possible to examine the effect of infection on the expression of several hundred well-characterized host cell genes in an unbiased manner. Interestingly, approximately 40% of the genes whose expression was detected in macrophages were down-regulated during infection with L. donovani. However, several genes were also induced during the infection process, some of which could play a role in recruitment of additional macrophages to the site of infection. Taken together, the general suppression of gene expression in addition to the selective induction of key genes is likely to play an important role in allowing the parasite to survive and proliferate within its host macrophage cell.  相似文献   

20.
Leishmania donovani is a primitive trypanosomatid pathogen of humans. This protozoan is apically polarized such that the flagellar reservoir, the exclusive site of endocytosis and exocytosis, is situated at the anterior end. Recent evidence for the existence of an endocytic pathway in Leishmania has prompted us to investigate candidate temporal markers for endocytosis. In this study we identify the L. donovani Rab5b gene, and demonstrate the localization of a Rab5b chimera to early endosomes. A full-length Rab5b protein was fused to green fluorescent protein (GFP) to generate a chimeric protein GFP::Rab5b. Transfected L. donovani promastigotes carrying this chimeric construct displayed GFP::Rab5b localization. Additionally, incubation of transfected promastigotes with the fluid-phase marker Texas Red dextran demonstrated anterior co-localization of GFP::Rab5b and dye. This suggests Rab5b may act as a marker for early endosomes in L. donovani. Note. Nucleotide sequence data reported in this paper are available in the GenBankTM, EMBL and DDBJ databases under the accession numbers AY357217, AL359774, AF007547, BC032740.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号