首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1?/?;Dlx5?/? mice, the frontal bones defect was more severe than that of either Msx1?/? or Dlx5?/? mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development. genesis 48:645–655, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Roles for Msx and Dlx homeoproteins in vertebrate development   总被引:16,自引:0,他引:16  
Bendall AJ  Abate-Shen C 《Gene》2000,247(1-2):17-31
  相似文献   

4.
BACKGROUND: Previous published experiments reported that in vitro exposure of postimplantation rat embryos to the triazole fungicide triadimefon (FON) resulted in specific abnormalities at the branchial apparatus and that the sensitive period is restricted to the first 24 hr of culture and is associated with the abnormal expression of TGF family genes (some of a large panel of genes regulated by retinoic acid (RA) and involved in branchial arch morphogenesis). The aim of this study is the determination of the sensitive window to FON‐induced abnormalities during in vitro development and the evaluation of the expression of some genes controlled by RA and involved in early branchial arch morphogenesis (Gsc, Msx1, Msx2, Dlx1, Dlx2, Shh, Patched (the main Shh receptor)). METHODS: Rat embryos were exposed in vitro to the FON under condition known to be able to induce 100% of abnormal embryos (250 µ M) at different stages and examined after 48 hr of culture. The sensitive window for FON‐induced abnormalities was during the hours E9 h8.00 PM–E10 h8.00 AM. To evaluate the expression of selected genes, embryos exposed during the sensitive stages were processed to perform quantitative PCR after 18 and 24 hr of culture. RESULTS: FON was able to affect the expression of some genes in a stage‐specific manner: earlier embryos were characterized by the downregulation of Msx2 and Gsc, later embryos showed the downregulation of Gsc, Shh, and Patched. The obtained data suggest that FON‐induced abnormalities are mediated, at least in part, through the imbalance of the expression of RA‐related signals. Birth Defects Res (Part B) 92:77‐81, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
Msx homeobox gene family and craniofacial development   总被引:9,自引:0,他引:9  
Alappat S  Zhang ZY  Chen YP 《Cell research》2003,13(6):429-442
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice.  相似文献   

8.
9.
The Dlx5 gene encodes a Distal-less-related DNA-binding homeobox protein first expressed during early embryonic development in anterior regions of the mouse embryo. In later developmental stages, it appears in the branchial arches, the otic and olfactory placodes and their derivatives, in restricted brain regions, in all extending appendages and in all developing bones. We have created a null allele of the mouse Dlx5 gene by replacing exons I and II with the E. coli lacZ gene. Heterozygous mice appear normal. Beta-galactosidase activity in Dlx5+/- embryos and newborn animals reproduces the known pattern of expression of the gene. Homozygous mutants die shortly after birth with a swollen abdomen. They present a complex phenotype characterised by craniofacial abnormalities affecting derivatives of the first four branchial arches, severe malformations of the vestibular organ, a delayed ossification of the roof of the skull and abnormal osteogenesis. No obvious defect was observed in the patterning of limbs and other appendages. The defects observed in Dlx5-/- mutant animals suggest multiple and independent roles of this gene in the patterning of the branchial arches, in the morphogenesis of the vestibular organ and in osteoblast differentiation.  相似文献   

10.
A number of developmental regulatory genes, including homeobox genes, are dynamically expressed in the mammalian cephalic ectomesenchyme during craniofacial morphogenesis. Owing to the vast amount of gene knock out experiments, functions of such genes are now being revealed in the mammalian skeletal patterning process. The murine goosecoid (Gsc) and Msx1 genes are expressed during craniofacial development and each mutant mouse displays intriguing facial abnormalities including those of middle ear ossicles, suggesting that both genes play roles in spatial programming of craniofacial regions. In order to examine whether these genes could function in concert to direct particular craniofacial morphogenesis, double knock out mice were analyzed. The phenotype of the double mutant mice was restricted to the first arch derivatives and was apparently additive of the single gene mutant mice, implying region specific genetic interactions of these homeobox genes expressed in overlapping regions of middle ear forming ectomesenchyme. Our results also suggested that the patterning of distal portions of the malleus depends on the tympanic membrane, for which normal expressions of both the genes are prerequisite.  相似文献   

11.
12.
13.
Multiple functions of Dlx genes   总被引:5,自引:0,他引:5  
  相似文献   

14.
During development, patterning and morphogenesis of tissues are intimately coordinated through control of cellular proliferation and differentiation. We describe a mechanism by which vertebrate Msx homeobox genes inhibit cellular differentiation by regulation of the cell cycle. We show that misexpression of Msx1 via retroviral gene transfer inhibits differentiation of multiple mesenchymal and epithelial progenitor cell types in culture. This activity of Msx1 is associated with its ability to upregulate cyclin D1 expression and Cdk4 activity, while Msx1 has minimal effects on cellular proliferation. Transgenic mice that express Msx1 under the control of the mouse mammary tumor virus long terminal repeat (MMTV LTR) display impaired differentiation of the mammary epithelium during pregnancy, which is accompanied by elevated levels of cyclin D1 expression. We propose that Msx1 gene expression maintains cyclin D1 expression and prevents exit from the cell cycle, thereby inhibiting terminal differentiation of progenitor cells. Our model provides a framework for reconciling the mutant phenotypes of Msx and other homeobox genes with their functions as regulators of cellular proliferation and differentiation during embryogenesis.  相似文献   

15.
16.
17.
18.
Bmp4 is a downstream gene of Msx1 in early mouse tooth development. In this study, we introduced the Msx1-Bmp4 transgenic allele to the Msx1 mutants in which tooth development is arrested at the bud stage in an effort of rescuing Msx1 mutant tooth phenotype in vivo. Ectopic expression of a Bmp4 transgene driven by the mouse Msx1promoter in the dental mesenchyme restored the expression of Lef-1 and Dlx2 but neither Fgf3 nor syndecan-1 in the Msx1 mutant molar tooth germ. The mutant phenotype of molar but not incisor could be partially rescued to progress to the cap stage. The Msx1-Bmp4 transgene was also able to rescue the alveolar processes and the neonatal lethality of the Msx1 mutants. In contrast, overexpression of Bmp4 in the wild type molar mesenchyme down-regulated Shh and Bmp2 expression in the enamel knot, the putative signaling center for tooth patterning, but did not produce a tooth phenotype. These results indicate that Bmp4 can bypass Msx1 function to partially rescue molar tooth development in vivo, and to support alveolar process formation. Expression of Shh and Bmp2 in the enamel knot may not represent critical signals for tooth patterning.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号