首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Humans and other animals do not use social learning indiscriminately, rather, natural selection has favoured the evolution of social learning rules that make selective use of social learning to acquire relevant information in a changing environment. We present a gene-culture coevolutionary analysis of a small selection of such rules (unbiased social learning, payoff-biased social learning and frequency-dependent biased social learning, including conformism and anti-conformism) in a population of asocial learners where the environment is subject to a constant probability of change to a novel state. We define conditions under which each rule evolves to a genetically polymorphic equilibrium. We find that payoff-biased social learning may evolve under high levels of environmental variation if the fitness benefit associated with the acquired behaviour is either high or low but not of intermediate value. In contrast, both conformist and anti-conformist biases can become fixed when environment variation is low, whereupon the mean fitness in the population is higher than for a population of asocial learners. Our examination of the population dynamics reveals stable limit cycles under conformist and anti-conformist biases and some highly complex dynamics including chaos. Anti-conformists can out-compete conformists when conditions favour a low equilibrium frequency of the learned behaviour. We conclude that evolution, punctuated by the repeated successful invasion of different social learning rules, should continuously favour a reduction in the equilibrium frequency of asocial learning, and propose that, among competing social learning rules, the dominant rule will be the one that can persist with the lowest frequency of asocial learning.  相似文献   

2.
In nature, animals often ignore socially available information despite the multiple theoretical benefits of social learning over individual trial-and-error learning. Using information filtered by others is quicker, more efficient and less risky than randomly sampling the environment. To explain the mix of social and individual learning used by animals in nature, most models penalize the quality of socially derived information as either out of date, of poor fidelity or costly to acquire. Competition for limited resources, a fundamental evolutionary force, provides a compelling, yet hitherto overlooked, explanation for the evolution of mixed-learning strategies. We present a novel model of social learning that incorporates competition and demonstrates that (i) social learning is favoured when competition is weak, but (ii) if competition is strong social learning is favoured only when resource quality is highly variable and there is low environmental turnover. The frequency of social learning in our model always evolves until it reduces the mean foraging success of the population. The results of our model are consistent with empirical studies showing that individuals rely less on social information where resources vary little in quality and where there is high within-patch competition. Our model provides a framework for understanding the evolution of social learning, a prerequisite for human cumulative culture.  相似文献   

3.
Levels of parasitism are continuously distributed in nature. Models of host-parasite coevolution, however, typically assume that species can be easily characterized as either parasitic or non-parasitic. Consequently, it is poorly understood which factors influence the evolution of parasitism itself. We investigate how ploidy level and the genetic mechanisms underlying infection influence evolution along the continuum of parasitism levels. In order for parasitism to evolve, selective benefits to the successful invasion of hosts must outweigh the losses when encountering resistant hosts. However, we find that exactly where this threshold occurs depends not only on the strength of selection, but also on the genetic model of interaction, the ploidy level in each species, and the nature of the costs to virulence and resistance. With computer simulations, we are able to incorporate more realistic dynamics at the loci underlying species interactions and to extend our analyses in a number of directions, including finite population sizes, multiple alleles and different generation times.  相似文献   

4.
Human cultural traits typically result from a gradual process that has been described as analogous to biological evolution. This observation has led pioneering scholars to draw inspiration from population genetics to develop a rigorous and successful theoretical framework of cultural evolution. Social learning, the mechanism allowing information to be transmitted between individuals, has thus been described as a simple replication mechanism. Although useful, the extent to which this idealization appropriately describes the actual social learning events has not been carefully assessed. Here, we used a specifically developed computer task to evaluate (i) the extent to which social learning leads to the replication of an observed behaviour and (ii) the consequences it has for fitness landscape exploration. Our results show that social learning does not lead to a dichotomous choice between disregarding and replicating social information. Rather, it appeared that individuals combine and transform information coming from multiple sources to produce new solutions. As a consequence, landscape exploration was promoted by the use of social information. These results invite us to rethink the way social learning is commonly modelled and could question the validity of predictions coming from models considering this process as replicative.  相似文献   

5.
Abstract Learning is thought to be adaptive in variable environments, whereas constant, predictable environments are supposed to favor unconditional, genetically fixed responses. A dichotomous view of behavior as either learned or innate ignores a potential evolutionary interaction between the learned and innate components of a behavioral response. We addressed this interaction in the context of oviposition substrate choice in Drosophila melanogaster, asking two main questions. First, will learning also evolve in a constant environment in which it always pays to show the same choice? Second, how does an opportunity to learn affect the evolution of the innate (genetic) component of oviposition substrate choice? We exposed experimental populations to four selection regimes, involving selection on oviposition substrate preference (an orange versus a pineapple medium). In two selection regimes the flies were selected for preference either for the orange medium, or for the pineapple medium. In the remaining two selection regimes the flies were also selected for preference for either orange or pineapple, but additionally could use past experience (aversion learning) to decide which medium it paid to avoid. Lines exposed to the latter selection regimes evolved improved learning ability, indicating that learning may be advantageous even if the same behavioral response is favored every generation. Furthermore, of the two selection regimes that favored oviposition on the pineapple medium, the regime that allowed for learning led to the evolution of a stronger innate preference for pineapple, than the regime that did not allow for learning. In contrast, of the two regimes that selected for oviposition on the orange medium, the one that allowed for learning led to a smaller evolutionary change of the innate preference. Thus, an opportunity to learn facilitated the evolution of innate preference under selection for preference for pineapple, but hindered it under selection for preference for orange. We discuss possible mechanisms for this effect.  相似文献   

6.
The importance of early experience in animals’ life is unquestionable, and imprinting-like phenomena may shape important aspects of behaviour. Early learning typically occurs during a sensitive period, which restricts crucial processes of information storage to a specific developmental phase. The characteristics of the sensitive period have been largely investigated in vertebrates, because of their complexity and plasticity, both in behaviour and neurophysiology, but early learning occurs also in invertebrates. In social insects, early learning appears to influence important social behaviours such as nestmate recognition. Yet, the mechanisms underlying recognition systems are not fully understood. It is currently believed that Polistes social wasps are able to discriminate nestmates from non-nestmates following the perception of olfactory cues present on the paper of their nest, which are learned during a strict sensitive period, immediately after emergence. Here, through differential odour experience experiments, we show that workers of Polistes dominula develop correct nestmate recognition abilities soon after emergence even in absence of what have been so far considered the necessary cues (the chemicals spread on nest paper). P. dominula workers were exposed for the first four days of adult life to paper fragments from their nest, or from a foreign conspecific nest or to a neutral condition. Wasps were then transferred to their original nests where recognition abilities were tested. Our results show that wasps do not alter their recognition ability if exposed only to nest material, or in absence of nest material, during the early phase of adult life. It thus appears that the nest paper is not used as a source of recognition cues to be learned in a specific time window, although we discuss possible alternative explanations. Our study provides a novel perspective for the study of the ontogeny of nestmate recognition in Polistes wasps and in other social insects.  相似文献   

7.
8.
Indirect reciprocity, a key concept in behavioral experiments and evolutionary game theory, provides a mechanism that allows reciprocal altruism to emerge in a population of self-regarding individuals even when repeated interactions between pairs of actors are unlikely. Recent empirical evidence show that humans typically follow complex assessment strategies involving both reciprocity and social imitation when making cooperative decisions. However, currently, we have no systematic understanding of how imitation, a mechanism that may also generate negative effects via a process of cumulative advantage, affects cooperation when repeated interactions are unlikely or information about a recipient's reputation is unavailable. Here we extend existing evolutionary models, which use an image score for reputation to track how individuals cooperate by contributing resources, by introducing a new imitative-trust score, which tracks whether actors have been the recipients of cooperation in the past. We show that imitative trust can co-exist with indirect reciprocity mechanisms up to a threshold and then cooperation reverses -revealing the elusive nature of cooperation. Moreover, we find that when information about a recipient's reputation is limited, trusting the action of third parties towards her (i.e. imitating) does favor a higher collective cooperation compared to random-trusting and share-alike mechanisms. We believe these results shed new light on the factors favoring social imitation as an adaptive mechanism in populations of cooperating social actors.  相似文献   

9.
Spatial coherence (synchrony) among subpopulations poses a danger to the metacommunity, as it increases the risk of regional extinction. When this effect is significant, the use of inference techniques based on the stochastic patch occupancy model (SPOM) may be inadequate, since SPOMs assume that each habitat patch is either occupied or empty, thereby neglecting the intra‐patch dynamics. Here we suggest a general classification of the dynamics that allows the identification, in a model‐independent manner, of the regimes where coherence effects are strong. We also present a new technique, based on patch occupancy (presence/absence) data, for identifying the role of spatial coherence in the stabilization of a metapopulation. If the chance of a local extinction grows with the connectivity, this implies that spatial synchronization is too strong and that regional‐scale extinction becomes possible. When this scenario occurs, a decrease in the movement of individuals (habitat fragmentation, reduced dispersal rates) has a positive effect on the sustainability of the spatially distributed population. The results of individual based simulations of a spatially structured population are analyzed with SPOM and the regime where the two‐state approximation fails is identified.  相似文献   

10.
The age‐dependent choice between expressing individual learning (IL) or social learning (SL) affects cumulative cultural evolution. A learning schedule in which SL precedes IL is supportive of cumulative culture because the amount of nongenetically encoded adaptive information acquired by previous generations can be absorbed by an individual and augmented. Devoting time and energy to learning, however, reduces the resources available for other life‐history components. Learning schedules and life history thus coevolve. Here, we analyze a model where individuals may have up to three distinct life stages: “infants” using IL or oblique SL, “juveniles” implementing IL or horizontal SL, and adults obtaining material resources with learned information. We study the dynamic allocation of IL and SL within life stages and how this coevolves with the length of the learning stages. Although no learning may be evolutionary stable, we find conditions where cumulative cultural evolution can be selected for. In that case, the evolutionary stable learning schedule causes individuals to use oblique SL during infancy and a mixture between IL and horizontal SL when juvenile. We also find that the selected pattern of oblique SL increases the amount of information in the population, but horizontal SL does not do so.  相似文献   

11.
Alan Rogers (1988) presented a game theory model of the evolution of social learning, yielding the paradoxical conclusion that social learning does not increase the fitness of a population. We expand on this model, allowing for imperfections in individual and social learning as well as incorporating a "critical social learning" strategy that tries to solve an adaptive problem first by social learning, and then by individual learning if socially acquired behavior proves unsatisfactory. This strategy always proves superior to pure social learning and typically has higher fitness than pure individual learning, providing a solution to Rogers's paradox of nonadaptive culture. Critical social learning is an evolutionarily stable strategy (ESS) unless cultural transmission is highly unfaithful, the environment is highly variable, or social learning is much more costly than individual learning. We compare the model to empirical data on social learning and on spatial variation in primate cultures and list three requirements for adaptive culture.  相似文献   

12.
Studies on the genetics of adaptation from new mutations typically neglect the possibility that a deleterious mutation might fix. Nonetheless, here we show that, in many regimes, the first mutation to fix is most often deleterious, even when fitness is expected to increase in the long term. In particular, we prove that this phenomenon occurs under weak mutation for any house‐of‐cards model with an equilibrium distribution. We find that the same qualitative results hold under Fisher's geometric model. We also provide a simple intuition for the surprising prevalence of unconditionally deleterious substitutions during early adaptation. Importantly, the phenomenon we describe occurs on fitness landscapes without any local maxima and is therefore distinct from “valley crossing.” Our results imply that the common practice of ignoring deleterious substitutions leads to qualitatively incorrect predictions in many regimes. Our results also have implications for the substitution process at equilibrium and for the response to a sudden decrease in population size.  相似文献   

13.
Ecosystems driven by wildfire regimes are characterized by fire size distributions resembling power laws. Existing models produce power laws, but their predicted exponents are too high and fail to capture the exponent's variation with geographic region. Here we present a minimal model of fire dynamics that describes fire spread as a stochastic birth-death process, analogous to stochastic population growth or disease spread and incorporating memory effects from previous fires. The model reproduces multiple regional patterns in fire regimes and allows us to classify different regions in terms of their proximity to a critical threshold. Transitions across this critical threshold imply abrupt and pronounced increases in average fire size. The model predicts that large regions in Canada are currently close to this transition and might be driven beyond the threshold in the future. We illustrate this point by analyzing the time series for large fires (>199 ha) from the Canadian Boreal Plains, found to have shifted from a subcritical regime to a critical regime in the recent past. By contrast to its predecessor, the model also suggests that a critical transition, and not self-organized criticality, underlies forest fire dynamics, with implications for other ecological systems exhibiting power-law-like patterns, in particular for their sensitivity to environmental change and control efforts.  相似文献   

14.
Leclercq V  Seitz AR 《PloS one》2012,7(4):e36228
Recent research of task-irrelevant perceptual learning (TIPL) demonstrates that stimuli that are consistently presented at relevant point in times (e.g. with task-targets or rewards) are learned, even in the absence of attention to these stimuli. However, different research paradigms have observed different results for how salient stimuli are learned; with some studies showing no learning, some studies showing positive learning and others showing negative learning effects. In this paper we focused on how the level of processing of stimuli impacts fast-TIPL. We conducted three different experiments in which the level of processing of the information paired with a target was manipulated. Our results indicated that fast-TIPL occurs when participants have to memorize the information presented with the target, but also when they just have to process this information for a secondary task without an explicit memorization of those stimuli. However, fast-TIPL does not occur when participants have to ignore the target-paired information. This observation is consistent with recent models of TIPL that suggest that attentional signals can either enhance or suppress learning depending on whether those stimuli are distracting or not to the subjects' objectives. Our results also revealed a robust gender effect in fast-TIPL, where male subjects consistently show fast-TIPL, whereas the observation of fast-TIPL is inconsistent in female subjects.  相似文献   

15.
Observing another person performing a complex action accelerates the observer’s acquisition of the same action and limits the time-consuming process of learning by trial and error. Observational learning makes an interesting and potentially important topic in the developmental domain, especially when disorders are considered. The implications of studies aimed at clarifying whether and how this form of learning is spared by pathology are manifold. We focused on a specific population with learning and intellectual disabilities, the individuals with Williams syndrome. The performance of twenty-eight individuals with Williams syndrome was compared with that of mental age- and gender-matched thirty-two typically developing children on tasks of learning of a visuo-motor sequence by observation or by trial and error. Regardless of the learning modality, acquiring the correct sequence involved three main phases: a detection phase, in which participants discovered the correct sequence and learned how to perform the task; an exercise phase, in which they reproduced the sequence until performance was error-free; an automatization phase, in which by repeating the error-free sequence they became accurate and speedy. Participants with Williams syndrome beneficiated of observational training (in which they observed an actor detecting the visuo-motor sequence) in the detection phase, while they performed worse than typically developing children in the exercise and automatization phases. Thus, by exploiting competencies learned by observation, individuals with Williams syndrome detected the visuo-motor sequence, putting into action the appropriate procedural strategies. Conversely, their impaired performances in the exercise phases appeared linked to impaired spatial working memory, while their deficits in automatization phases to deficits in processes increasing efficiency and speed of the response. Overall, observational experience was advantageous for acquiring competencies, since it primed subjects’ interest in the actions to be performed and functioned as a catalyst for executed action.  相似文献   

16.
Much of the literature on common-pool resources has focused on elucidating the social mechanisms and local institutions that lead to the regulation of common-pool resources. There is much less information about how management regimes translate into environmental impacts or how environmental impacts influence the emergence of management decisions. We use quantitative and qualitative methods to investigate the link between forest condition, agricultural change and the emergence of common-pool resource management regimes in two indigenous Kichwa communities in the Ecuadorian Amazon. We show that forest condition is linked to agricultural production and that the perception of common-pool resource scarcity influences the emergence of management regimes. We argue that population pressure, market forces and resource scarcity, which are usually associated with measures of agricultural change can also promote the emergence of common-pool resource management regimes.  相似文献   

17.
Effects of social group size on information transfer and task allocation   总被引:6,自引:0,他引:6  
Summary Social animals exchange information during social interaction. The rate of interaction and, hence, the rate of information exchange, typically changes with density and density may be affected by the size of the social group. We investigate models in which each individual may be engaged in one of several tasks. For example, the different tasks could represent alternative foraging locations exploited by an ant colony. An individual's decision about which task to pursue depends both on environmental stimuli and on interactions among individuals. We examine how group size affects the allocation of individuals among the various tasks. Analysis of the models shows the following. (1) Simple interactions among individuals with limited ability to process information can lead to group behaviour that closely approximates the predictions of evolutionary optimality models, (2) Because per capita rates of social interaction may increase with group size, larger groups may be more efficient than smaller ones at tracking a changing environment, (3) Group behaviour is determined both by each individual's interaction with environmental stimuli and by social exchange of information. To keep these processes in balance across a range of group sizes, organisms are predicted to regulate per capita rates of social interaction and (4) Stochastic models show, at least in some cases, that the results described here occur even in small groups of approximately ten individuals.  相似文献   

18.
We analyze the joint evolution of an ecological character and of dispersal distance in asexual and sexual populations inhabiting an environmental gradient. Several interesting phenomena resulting from the evolutionary interplay of these characters are revealed. First, asexual and sexual populations exhibit two analogous evolutionary regimes, in which either speciation in the ecological character occurs in conjunction with evolution of short-range dispersal, or dispersal distance remains high and speciation does not occur. Second, transitions between these two regimes qualitatively differ between asexual and sexual populations, with the former showing speciation with long-range dispersal and the latter showing no speciation with short-range dispersal. Third, a phenotypic gradient following the environmental gradient occurs only in the last case, i.e., for non-speciating sexual populations evolving towards short-range dispersal. Fourth, the transition between the evolutionary regimes of long-range dispersal with no speciation and short-range dispersal with speciation is typically abrupt, mediated by a positive feedback between incipient speciation and the evolution of short-range dispersal. Fifth, even though the model of sexual evolution analyzed here does not permit assortative mating preferences, speciation occurs for a surprisingly wide range of conditions. This illustrates that dispersal evolution is a powerful alternative to preference evolution in enabling spatially distributed sexual populations to respond to frequency-dependent disruptive selection.  相似文献   

19.
Herd behaviour in financial markets is a recurring phenomenon that exacerbates asset price volatility, and is considered a possible contributor to market fragility. While numerous studies investigate herd behaviour in financial markets, it is often considered without reference to the pricing of financial instruments or other market dynamics. Here, a trader interaction model based upon informational cascades in the presence of information thresholds is used to construct a new model of asset price returns that allows for both quiescent and herd-like regimes. Agent interaction is modelled using a stochastic pulse-coupled network, parametrised by information thresholds and a network coupling probability. Agents may possess either one or two information thresholds that, in each case, determine the number of distinct states an agent may occupy before trading takes place. In the case where agents possess two thresholds (labelled as the finite state-space model, corresponding to agents’ accumulating information over a bounded state-space), and where coupling strength is maximal, an asymptotic expression for the cascade-size probability is derived and shown to follow a power law when a critical value of network coupling probability is attained. For a range of model parameters, a mixture of negative binomial distributions is used to approximate the cascade-size distribution. This approximation is subsequently used to express the volatility of model price returns in terms of the model parameter which controls the network coupling probability. In the case where agents possess a single pulse-coupling threshold (labelled as the semi-infinite state-space model corresponding to agents’ accumulating information over an unbounded state-space), numerical evidence is presented that demonstrates volatility clustering and long-memory patterns in the volatility of asset returns. Finally, output from the model is compared to both the distribution of historical stock returns and the market price of an equity index option.  相似文献   

20.
Choosing from whom to learn is an important element of social learning. It affects learner success and the profile of behaviors in the population. Because individuals often differ in their traits and capabilities, their benefits from different behaviors may also vary. Homophily, or assortment, the tendency of individuals to interact with other individuals with similar traits, is known to affect the spread of behaviors in humans. We introduce models to study the evolution of assortative social learning (ASL), where assorting on a trait acts as an individual‐specific mechanism for filtering relevant models from which to learn when that trait varies. We show that when the trait is polymorphic, ASL may maintain a stable behavioral polymorphism within a population (independently of coexistence with individual learning in a population). We explore the evolution of ASL when assortment is based on a nonheritable or partially heritable trait, and when ASL competes with different non‐ASL strategies: oblique (learning from the parental generation) and vertical (learning from the parent). We suggest that the tendency to assort may be advantageous in the context of social learning, and that ASL might be an important concept for the evolutionary theory of social learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号