首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biomechanics of overground vs. treadmill walking in healthy individuals.   总被引:1,自引:0,他引:1  
The goal of this study was to compare treadmill walking with overground walking in healthy subjects with no known gait disorders. Nineteen subjects were tested, where each subject walked on a split-belt instrumented treadmill as well as over a smooth, flat surface. Comparisons between walking conditions were made for temporal gait parameters such as step length and cadence, leg kinematics, joint moments and powers, and muscle activity. Overall, very few differences were found in temporal gait parameters or leg kinematics between treadmill and overground walking. Conversely, sagittal plane joint moments were found to be quite different, where during treadmill walking trials, subjects demonstrated less dorsiflexor moments, less knee extensor moments, and greater hip extensor moments. Joint powers in the sagittal plane were found to be similar at the ankle but quite different at the knee and hip joints. Differences in muscle activity were observed between the two walking modalities, particularly in the tibialis anterior throughout stance, and in the hamstrings, vastus medialis and adductor longus during swing. While differences were observed in muscle activation patterns, joint moments and joint powers between the two walking modalities, the overall patterns in these behaviors were quite similar. From a therapeutic perspective, this suggests that training individuals with neurological injuries on a treadmill appears to be justified.  相似文献   

2.
The purpose of this study was to develop a method for identifying subject-specific passive elastic joint moment-angle relationships in the lower extremity, which could subsequently be used to estimate passive contributions to joint kinetics during gait. Twenty healthy young adults participated in the study. Subjects were positioned side-lying with their dominant limb supported on a table via low-friction carts. A physical therapist slowly manipulated the limb through full sagittal hip, knee, and ankle ranges of motion using two hand-held 3D load cells. Lower extremity kinematics, measured with a passive marker motion capture system, and load cell readings were used to compute joint angles and associated passive joint moments. We formulated a passive joint moment-angle model that included eight exponential functions to account for forces generated via the passive stretch of uni-articular structures and bi-articular muscles. Model parameters were estimated for individual subjects by minimizing the sum of squared errors between model predicted and experimentally measured moments. The model predictions closely replicated measured joint moments with average root-mean-squared errors of 2.5, 1.4, and 0.7 Nm about the hip, knee, and ankle respectively. We show that the models can be coupled with gait kinematics to estimate passive joint moments during walking. Passive hip moments were substantial from terminal stance through initial swing, with energy being stored as the hip extended and subsequently returned during pre- and initial swing. We conclude that the proposed methodology could provide quantitative insights into the potentially important role that passive mechanisms play in both normal and abnormal gait.  相似文献   

3.
The mobility of above-knee amputees (A/K) is limited, in part, due to the performance of A/K prostheses during the stance phase. Currently stance phase control of most conventional A/K prostheses can only be achieved through leg alignment and choice of the SACH (Solid Ankle Cushioned Heel) foot. This paper examines the role of the knee controller in relation to a SACH foot during the stance phase of level walking. The three-dimensional gait mechanics were measured under two stance phase conditions. In the first set of trials, the amputee used a prosthesis with a conventional knee controller that allowed the amputee to maintain the knee joint in full extension during the stance phase. In the second set of trials, the prosthetic knee, during stance, echoed the modified kinematics of the amputee's sound (intact) knee that had been recorded during the previous sound stance phase. Analysis and interpretation of the data indicate the following: (1) SACH foot design can strongly influence the walking mechanics independent of the knee controller; (2) knee controller design and SACH foot design are mutually interdependent; and (3) normal kinematics imposed on the prosthetic knee does not necessarily produce normal hip kinematics (e.g. reduce the abnormal rise in the prosthetic side hip trajectory). Future research is necessary to explore and exploit the interdependency of prosthetic knee control and foot design.  相似文献   

4.
Modulation of limb dynamics in the swing phase of locomotion   总被引:6,自引:0,他引:6  
A method was presented for quantifying cat (Felis catus) hind limb dynamics during swing phase of locomotion using a two-link rigid body model of leg and paw, which highlighted the dynamic interactions between segments. Comprehensive determination was made of cat segment parameters necessary for dynamic analysis, and regression equations were formulated to predict the inertial parameters of any comparable cat. Modulations in muscle and non-muscle components of knee and ankle joint moments were examined at two treadmill speeds using three gaits: (a) pace-like walk and trot-like walk, at 1.0 ms-1, and (b) gallop, at 2.1 ms-1. Results showed that muscle and segment interactive moments significantly effected limb trajectories during swing. Some moment components were greater in galloping than in walking, but net joint maxima were not significantly different between speeds. Moment magnitudes typically were greater for pace-like walking than for trot-like walking at the same speed. Generally, across gaits, the net and muscle moments were in phase with the direction of distal joint motion, and these same moments were out of phase with proximal joint motion. Intersegmental dynamics were not modulated exclusively by speed of locomotion, but interactive moments were also influenced significantly by gait mode.  相似文献   

5.
Many children with cerebral palsy walk with diminished knee extension during terminal swing, at speeds much slower than unimpaired children. Treatment of these gait abnormalities is challenging because the factors that extend the knee during normal walking, over a range of speeds, are not well understood. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to determine whether the relative contributions of individual muscles and other factors to angular motions of the swing-limb knee vary with walking speed. Simulations were developed that reproduced the measured gait dynamics of seven unimpaired children walking at self-selected, fast, slow, and very slow speeds (7 subjects×4 speeds=28 simulations). In mid-swing, muscles on the stance limb made the largest net contribution to extension of the swing-limb knee at all speeds examined. The stance-limb hip abductors, in particular, accelerated the pelvis upward, inducing reaction forces at the swing-limb hip that powerfully extended the knee. Velocity-related forces (i.e., Coriolis and centrifugal forces) also contributed to knee extension in mid-swing, though these contributions were diminished at slower speeds. In terminal swing, the hip flexors and other muscles on the swing-limb decelerated knee extension at the subjects’ self-selected, slow, and very slow speeds, but had only a minimal net effect on knee motions at the fastest speeds. Muscles on the stance limb helped brake knee extension at the subjects’ fastest speeds, but induced a net knee extension acceleration at the slowest speeds. These data—which show that the contributions of muscular and velocity-related forces to terminal-swing knee motions vary systematically with walking speed—emphasize the need for speed-matched control subjects when attempting to determine the causes of a patient's abnormal gait.  相似文献   

6.
This study examines the effects of a radical bariatric surgery-induced weight loss on the gait of obese subjects. We performed a three-dimensional motion analysis of lower limbs, and collected force platform data in the gait laboratory to calculate knee and hip joint moments. Subjects (n=13) performed walking trials in the laboratory before and 8.8 months (SD 4.2) after the surgical procedure at two gait speeds (1.2m/s and 1.5m/s). The average weight loss was 26.7kg (SD 9.2kg), corresponding to 21.5% (SD 6.8%) of the initial weight. We observed a decrease in step width at both gait speeds, but no changes in relative double support or swing time or stride length. A significant decrease was noted in the absolute values of peak knee abductor, peak knee flexor and peak hip extensor moments. However, the moment values normalized by the body weight and height remained unchanged in most cases. Thus, we conclude that weight loss reduces hip and knee joint moments in proportion to the amount of weight lost.  相似文献   

7.
Conventional designs of an above-knee prosthesis are based on mechanisms with mechanical properties (such as friction, spring and damping coefficients) that remain constant during changing cadence. These designs are unable to replace natural legs due to the lack of active knee joint control. Since the nonlinear and time-varying dynamic coupling between the thigh and the prosthetic limb is high during swing phase, an adaptive control is employed to control the knee joint motion. Two dimensional simulation indicates that the adaptive controller can improve the appearance of gait pattern. It is adaptable to walking speed and can compensate for the variations of hip moment, hip trajectory and toe-off conditions.  相似文献   

8.
A simple spring mechanics model can capture the dynamics of the center of mass (CoM) during human walking, which is coordinated by multiple joints. This simple spring model, however, only describes the CoM during the stance phase, and the mechanics involved in the bipedality of the human gait are limited. In this study, a bipedal spring walking model was proposed to demonstrate the dynamics of bipedal walking, including swing dynamics followed by the step-to-step transition. The model consists of two springs with different stiffnesses and rest lengths representing the stance leg and swing leg. One end of each spring has a foot mass, and the other end is attached to the body mass. To induce a forward swing that matches the gait phase, a torsional hip joint spring was introduced at each leg. To reflect the active knee flexion for foot clearance, the rest length of the swing leg was set shorter than that of the stance leg, generating a discrete elastic restoring force. The number of model parameters was reduced by introducing dependencies among stiffness parameters. The proposed model generates periodic gaits with dynamics-driven step-to-step transitions and realistic swing dynamics. While preserving the mimicry of the CoM and ground reaction force (GRF) data at various gait speeds, the proposed model emulated the kinematics of the swing leg. This result implies that the dynamics of human walking generated by the actuations of multiple body segments is describable by a simple spring mechanics.  相似文献   

9.
The shortcomings of conventional above-knee prostheses are due to their lack of adaptive control. Implementation of a microcomputer controlling the knee joint in a passive way has been suggested to enhance the patient's gait comfort, safety and cosmesis. This approach was used in the design of a new prosthetic system for the above-knee amputee, and tested on one patient. The knee joint of a conventional, modular prosthesis was replaced by a knee joint mechanism, equipped with a controllable brake on the knee joint axis. Sensors and a microcomputer were added, keeping the system self-contained. The modularity of the design permits the use of an alternative, external, PC-based control unit, emulating the self-contained one, and offering extended data monitoring and storage facilities. For both units an operating environment was written, including sensor/actuator interfacing and the implementation of a real-time interrupt, executing the control algorithm. A double finite state approach was used in the design of the control algorithm. On a higher level, the mode identification algorithm reveals the patient's intent. Within a specific mode (lower level), the relevant mode control algorithm looks for the current phase within the gait cycle. Within a particular phase, a specific simple control action with the brake replaces normal knee muscle activity. Test were carried out with one prosthetic patient using a basic control algorithm for level walking, allowing controlled knee flexion during stance phase. The technical feasibility of such a concept is illustrated by the test results, even though only flexion during early stance phase was controlled during the trials. Patient acceptance is not straightforward since knee flexion during stance phase is associated with knee buckling.  相似文献   

10.
Stiff-knee gait is a movement abnormality in which knee flexion during swing phase is significantly diminished. This study investigates the relationships between knee flexion velocity at toe-off, joint moments during swing phase and double support, and improvements in stiff-knee gait following rectus femoris transfer surgery in subjects with cerebral palsy. Forty subjects who underwent a rectus femoris transfer were categorized as "stiff" or "not-stiff" preoperatively based on kinematic measures of knee motion during walking. Subjects classified as stiff were further categorized as having "good" or "poor" outcomes based on whether their swing-phase knee flexion improved substantially after surgery. We hypothesized that subjects with stiff-knee gait would exhibit abnormal joint moments in swing phase and/or diminished knee flexion velocity at toe-off, and that subjects with diminished knee flexion velocity at toe-off would exhibit abnormal joint moments during double support. We further hypothesized that subjects classified as having a good outcome would exhibit postoperative improvements in these factors. Subjects classified as stiff tended to exhibit abnormally low knee flexion velocities at toe-off (p<0.001) and excessive knee extension moments during double support (p=0.001). Subjects in the good outcome group on average showed substantial improvement in these factors postoperatively. All eight subjects in this group walked with normal knee flexion velocity at toe-off postoperatively and only two walked with excessive knee extension moments in double support. By contrast, all 10 of the poor outcome subjects walked with low knee flexion velocity at toe-off postoperatively and seven walked with excessive knee extension moments in double support. Our analyses suggest that improvements in stiff-knee gait are associated with sufficient increases in knee flexion velocity at toe-off and corresponding decreases in excessive knee extension moments during double support. Therefore, while stiff-knee gait manifests during the swing phase of the gait cycle, it may be caused by abnormal muscle activity during stance.  相似文献   

11.
Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed.  相似文献   

12.
While it is widely speculated that obesity causes increased loads on the knee leading to joint degeneration, this concept is untested. The purpose of the study was to identify the effects of obesity on lower extremity joint kinetics and energetics during walking. Twenty-one obese adults were tested at self-selected (1.29m/s) and standard speeds (1.50m/s) and 18 lean adults were tested at the standard speed. Motion analysis and force platform data were combined to calculate joint torques and powers during the stance phase of walking. Obese participants were more erect with 12% less knee flexion and 11% more ankle plantarflexion in self-selected compared to standard speeds (both p<0.02). Obese participants were still more erect than lean adults with approximately 6 degrees more extension at all joints (p<0.05, for each joint) at the standard speed. Knee and ankle torques were 17% and 11% higher (p<0.034 and p<0.041) and negative knee work and positive ankle work were 68% and 11% higher (p<0.000 and p<0.048) in obese participants at the standard speed compared to the slower speed. Joint torques and powers were statistically identical at the hip and knee but were 88% and 61% higher (both p<0.000) at the ankle in obese compared to lean participants at the standard speed. Obese participants used altered gait biomechanics and despite their greater weight, they had less knee torque and power at their self-selected walking speed and equal knee torque and power while walking at the same speed as lean individuals. We propose that the ability to reorganize neuromuscular function during gait may enable some obese individuals to maintain skeletal health of the knee joint and this ability may also be a more accurate risk indicator for knee osteoarthritis than body weight.  相似文献   

13.
To investigate the biomechanical strategy adopted by older adults with medial compartment knee osteoarthritis (OA) for successful obstacle crossing with the trailing limb, and to discuss its implications for fall-prevention, 15 older adults with bilateral medial compartment knee OA and 15 healthy controls were recruited to walk and cross obstacles of heights of 10%, 20%, and 30% of their leg lengths. Kinematic and kinetic data were obtained using a three-dimensional (3D) motion analysis system and forceplates. The OA group had higher trailing toe clearance than the controls. When the trailing toe was above the obstacle, the OA group showed greater swing hip abduction, yet smaller stance hip adduction, knee flexion, and ankle eversion. They showed greater pelvic anterior tilt and toe-out angle. They also exhibited greater peak knee abductor moments during early stance and at the instant when the swing toe was above the obstacle, while a greater peak hip abductor moment was found during late stance. Smaller knee extensor, yet greater hip extensor moments, were found in the OA group throughout the stance phase. In order to achieve higher toe clearance with knee OA, particular joint kinematic and kinetic strategies have been adopted by the OA group. Weakness in the hip abductors and extensors in individuals with OA may be risk factors for tripping owing to the greater demands on these muscle groups during obstacle crossing by these individuals.  相似文献   

14.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.  相似文献   

15.
Children with cerebral palsy often walk with diminished knee extension during the terminal-swing phase, resulting in a troublesome "crouched" posture at initial contact and a shortened stride. Treatment of this gait abnormality is challenging because the factors that extend the knee during normal walking are not well understood, and because the potential of individual muscles to limit terminal-swing knee extension is unknown. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to quantify the angular accelerations of the knee induced by muscles and other factors during swing. Simulations were generated that reproduced the measured gait dynamics and muscle excitation patterns of six typically developing children walking at self-selected speeds. The knee was accelerated toward extension in the simulations by velocity-related forces (i.e., Coriolis and centrifugal forces) and by a number of muscles, notably the vasti in mid-swing (passive), the hip extensors in terminal swing, and the stance-limb hip abductors, which accelerated the pelvis upward. Knee extension was slowed in terminal swing by the stance-limb hip flexors, which accelerated the pelvis backward. The hamstrings decelerated the forward motion of the swing-limb shank, but did not contribute substantially to angular motions of the knee. Based on these data, we hypothesize that the diminished knee extension in terminal swing exhibited by children with cerebral palsy may, in part, be caused by weak hip extensors or by impaired hip muscles on the stance limb that result in abnormal accelerations of the pelvis.  相似文献   

16.
Following stroke many individuals are left with neurological and functional deficits, including hemiparesis, which impair their ability to walk. Our previous work reported that propulsion of the paretic leg during pre-swing is impaired and may limit gait speed and knee flexion during swing. To elucidate the mechanism of this impairment, we assessed the mechanical work produced by the hip, knee, and ankle moments during pre-swing of the paretic limb in a group of stroke subjects and compared it with the work produced by non-disabled controls walking at similar speeds. Kinematic and kinetic gait data were collected from 23 hemiparetic and 10 control subjects. The hemiparetic subjects walked at their self-selected speeds. The controls walked at their self-selected and two or three slower speeds. Even when compared to controls walking at slow speeds, ankle plantarflexor work during pre-swing was greatly reduced (-0.136+/-0.062J/kg) in the hemiparetic subjects. Differences in hip (+0.006+/-0.020J/kg) and knee (+0.040+/-0.026J/kg) moment work partially offset the reduction in ankle work, but net joint moment work was still significantly reduced (-0.088+/-0.056J/kg). The reduction in work accounts for the low energy of the paretic limb at the stance-to-swing transition previously reported. Future investigation is needed to determine if targeted training of the plantarflexors in the paretic limb improves swing-phase function and locomotor performance in hemiparetic individuals.  相似文献   

17.
Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75–2.63 m/s) across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R2 > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking.  相似文献   

18.
Accurate knowledge of the isolated contributions of joint movements to the three-dimensional displacement of the center of mass (COM) is fundamental for understanding the kinematics of normal walking and for improving the treatment of gait disabilities. Saunders et al. (1953) identified six kinematic mechanisms to explain the efficient progression of the whole-body COM in the sagittal, transverse, and coronal planes. These mechanisms, referred to as the major determinants of gait, were pelvic rotation, pelvic list, stance knee flexion, foot and knee mechanisms, and hip adduction. The aim of the present study was to quantitatively assess the contribution of each major gait determinant to the anteroposterior, vertical, and mediolateral displacements of the COM over one gait cycle. The contribution of each gait determinant was found by applying the concept of an ‘influence coefficient’, wherein the partial derivative of the COM displacement with respect to a prescribed determinant was calculated. The analysis was based on three-dimensional measurements of joint angular displacements obtained from 23 healthy young adults walking at slow, normal and fast speeds. We found that hip flexion, stance knee flexion, and ankle-foot interaction (comprised of ankle plantarflexion, toe flexion and the displacement of the center of pressure) are the major determinants of the displacements of the COM in the sagittal plane, while hip adduction and pelvic list contribute most significantly to the mediolateral displacement of the COM in the coronal plane. Pelvic rotation and pelvic list contribute little to the vertical displacement of the COM at all walking speeds. Pelvic tilt, hip rotation, subtalar inversion, and back extension, abduction and rotation make negligible contributions to the displacements of the COM in all three anatomical planes.  相似文献   

19.
Soldiers regularly transport loads weighing >20 kg at slow speeds for long durations. These tasks elicit high energetic costs through increased positive work generated by knee and ankle muscles, which may increase risk of muscular fatigue and decrease combat readiness. This study aimed to determine how modifying where load is borne changes lower-limb joint mechanical work production, and if load magnitude and/or walking speed also affect work production. Twenty Australian soldiers participated, donning a total of 12 body armor variations: six different body armor systems (one standard-issue, two commercially available [cARM1-2], and three prototypes [pARM1-3]), each worn with two different load magnitudes (15 and 30 kg). For each armor variation, participants completed treadmill walking at two speeds (1.51 and 1.83 m/s). Three-dimensional motion capture and force plate data were acquired and used to estimate joint angles and moments from inverse kinematics and dynamics, respectively. Subsequently, hip, knee, and ankle joint work and power were computed and compared between armor types and walking speeds. Positive joint work over the stance phase significantly increased with walking speed and carried load, accompanied by 2.3–2.6% shifts in total positive work production from the ankle to the hip (p < 0.05). Compared to using cARM1 with 15 kg carried load, carrying 30 kg resulted in significantly greater hip contribution to total lower-limb positive work, while knee and ankle work decreased. Substantial increases in hip joint contributions to total lower-limb positive work that occur with increases in walking speed and load magnitude highlight the importance of hip musculature to load carriage walking.  相似文献   

20.
Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号