首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hip joint moments are an important parameter in the biomechanical evaluation of orthopaedic surgery. Joint moments are generally calculated using scaled generic musculoskeletal models. However, due to anatomical variability or pathology, such models may differ from the patient's anatomy, calling into question the accuracy of the resulting joint moments. This study aimed to quantify the potential joint moment errors caused by geometrical inaccuracies in scaled models, during gait, for eight test subjects. For comparison, a semi-automatic computed tomography (CT)-based workflow was introduced to create models with subject-specific joint locations and inertial parameters. 3D surface models of the femora and hemipelves were created by segmentation and the hip joint centres and knee axes were located in these models. The scaled models systematically located the hip joint centre (HJC) up to 33.6 mm too inferiorly. As a consequence, significant and substantial peak hip extension and abduction moment differences were recorded, with, respectively, up to 23.1% and 15.8% higher values in the image-based models. These findings reaffirm the importance of accurate HJC estimation, which may be achieved using CT- or radiography-based subject-specific modelling. However, obesity-related gait analysis marker placement errors may have influenced these results and more research is needed to overcome these artefacts.  相似文献   

2.
This study examined the effect of body segment parameter (BSP) perturbations on joint moments calculated using an inverse dynamics procedure and muscle forces calculated using computed muscle control (CMC) during gait. BSP (i.e. segment mass, center of mass location (com) and inertia tensor) of the left thigh, shank and foot of a scaled musculoskeletal model were perturbed. These perturbations started from their nominal value and were adjusted to ±40% in steps of 10%, for both individual as well as combined perturbations in BSP. For all perturbations, an inverse dynamics procedure calculated the ankle, knee and hip moments based on an identical inverse kinematics solution. Furthermore, the effect of applying a residual reduction algorithm (RRA) was investigated. Muscle excitations and resulting muscle forces were calculated using CMC. The results show only a limited effect of an individual parameter perturbation on the calculated moments, where the largest effect is found when perturbing the shank com (MScom,shank, the ratio of absolute difference in torque and relative parameter perturbation, is maximally −7.81 N m for hip flexion moment). The additional influence of perturbing two parameters simultaneously is small (MSmass+com,thigh is maximally 15.2 N m for hip flexion moment). RRA made small changes to the model to increase the dynamic consistency of the simulation (after RRA MScom,shank is maximally 5.01 N m). CMC results show large differences in muscle forces when BSP are perturbed. These result from the underlying forward integration of the dynamic equations.  相似文献   

3.
Joint moments are commonly used to characterize gait. Factors like height and weight influence these moments. This study determined which of two commonly used normalization methods, body mass or body weight times height, most reduced the effects of height and weight on peak hip, knee, and ankle external moments during walking. The effectiveness of each normalization method in reducing gender differences was then tested. Gait data from 158 normal subjects were analyzed using unnormalized values, body mass normalized values, and body weight times height normalized values. Without normalization, height or weight accounted for 7-82% of the variance in all 10 peak components of the moments. With normalization, height and weight accounted for at most 6% of the variance with the exception of the hip adduction moment normalized by body weight times height and the ankle dorsiflexion moment normalized by body mass. For the hip adduction moment normalized by body weight times height, height still accounted for 13% of the variance (p<0.001) and for the ankle dorsiflexion moment normalized by body mass, 22% of the variance (p<0.001). After normalization, significant differences between males and females remained for only two out of 10 moments with the body weight times height method compared to six out of 10 moments with the body mass method. When compared to the unnormalized data, both normalization methods were highly effective in reducing height and weight differences. Even for the two cases where one normalization method was less effective than the other (hip adduction-body weight times height; ankle dorsiflexion-body mass) the normalization process reduced the variance ascribed to height or weight by 48% and 63%, respectively, as compared to the unnormalized data.  相似文献   

4.
The joint forces and moments are commonly used in gait analysis. They can be computed by four different 3D inverse dynamic methods proposed in the literature, either based on vectors and Euler angles, wrenches and quaternions, homogeneous matrices, or generalized coordinates and forces. In order to analyze the influence of the inverse dynamic method, the joint forces and moments were computed during gait on nine healthy subjects. A ratio was computed between the relative dispersions (due to the method) and the absolute amplitudes of the gait curves. The influence of the inverse dynamic method was negligible at the ankle (2%) but major at the knee and the hip joints (40%). This influence seems to be due to the dynamic computation rather than the kinematic computation. Compared to the influence of the joint center location, the body segment inertial parameter estimation, and more, the influence of the inverse dynamic method is at least of equivalent importance. This point should be confirmed with other subjects, possibly pathologic, and other movements.  相似文献   

5.
When comparing previous studies that have measured the three-dimensional moments acting about the lower limb joints (either external moments or opposing internal joint moments) during able-bodied adult gait, significant variation is apparent in the profiles of the reported transverse plane moments. This variation cannot be explained on the basis of adopted convention (i.e. external versus internal joint moment) or inherent variability in gait strategies. The aim of the current study was to determine whether in fact the frame in which moments are expressed has a dominant effect upon transverse plane moments and thus provides a valid explanation for the observed inconsistency in the literature. Kinematic and ground reaction force data were acquired from nine able-bodied adult subjects walking at a self-selected speed. Three-dimensional hip, knee and ankle joint moments during gait were calculated using a standard inverse dynamics approach. In addition to calculating internal joint moments, the components of the external moment occurring in the transverse plane at each of the lower limb joints were calculated to determine their independent effects. All moments were expressed in both the laboratory frame (LF) as well as the anatomical frame (AF) of the distal segment. With the exception of the ankle rotation moment in the foot AF, lower limb transverse plane joint moments during gait were found to display characteristic profiles that were consistent across subjects. Furthermore, lower limb transverse plane joint moments during gait differed when expressed in the distal segment AF compared to the LF. At the hip, the two alternative reference frames produced near reciprocal joint moment profiles. The components of the external moment revealed that the external ground reaction force moment was primarily responsible for this result. Lower limb transverse plane joint moments during gait were therefore found to be highly sensitive to a change in reference frame. These findings indicate that the different transverse plane joint moment profiles during able-bodied adult gait reported in the literature are likely to be explained on this basis.  相似文献   

6.
The rat is of increasing importance for experimental studies on fracture healing. The healing outcome of long bone fractures is strongly influenced by mechanical factors, such as the interfragmentary movement. This movement depends on the stability of the fracture fixation and the musculoskeletal loads. However, little is known about these loads in rats.The musculoskeletal loads during gait were estimated using an inverse-dynamic musculoskeletal model of the right hindlimb of the rat. This model was based on a micro-CT scan of the lower extremities and an anatomical study using 15 rat cadavers. Kinematics were reconstructed from X-ray movies, taken simultaneously from two perpendicular directions during a gait cycle. The ground reaction forces were taken from the literature. The muscle forces were calculated using an optimization procedure.The internal forces and moments varied over the gait cycle and along the femoral axis. The greatest internal force (up to 7 times bodyweight) acted in the longitudinal direction. The greatest internal moment (up to 13.8 bodyweight times millimeter) acted in the sagittal plane of the femur. The validity of the model was corroborated by comparing the estimated strains caused by the calculated loads on the surface of the femoral mid-shaft with those from the literature.Knowledge of the internal loads in the femur of the rat allows adjustment of the biomechanical properties of fixation devices in fracture healing studies to the desired interfragmentary movement.  相似文献   

7.
The influence of limb alignment on the gait of above-knee amputees.   总被引:2,自引:0,他引:2  
Biomechanical gait tests on above-knee amputees were conducted in which the alignment of the prosthesis was changed systematically. An eight-segment biomechanical model of the above-knee amputee was developed to analyse and present the three-dimensional kinematic and kinetic data obtained. The effects of alignment changes on the above-knee amputees' gait were studied in terms of the angular displacements of the lower limbs, ground reactions and intersegmental moments. It was found that following the alignment changes the angular displacement at the hip joint on the prosthetic side showed compensatory actions by the amputee. The ground reaction force was sensitive to alignment changes, and in particular, the changes in the characteristics of the fore-aft component of the ground force could be related to the alignment changes. The antero-posterior intersegmental moments at the prosthetic ankle and knee joints were evidently influenced by alignment.  相似文献   

8.
In gait analysis, the concepts of Euler and helical (screw) angles are used to define the three-dimensional relative joint angular motion of lower extremities. Reliable estimation of joint angular motion depends on the accurate definition and construction of embedded axes within each body segment. In this paper, using sensitivity analysis, we quantify the effects of uncertainties in the definition and construction of embedded axes on the estimation of joint angular motion during gait. Using representative hip and knee motion data from normal subjects and cerebral palsy patients, the flexion-extension axis is analytically perturbed +/- 15 degrees in 5 degrees steps from a reference position, and the joint angles are recomputed for both Euler and helical angle definitions. For the Euler model, hip and knee flexion angles are relatively unaffected while the ab/adduction and rotation angles are significantly affected throughout the gait cycle. An error of 15 degrees in the definition of flexion-extension axis gives rise to maximum errors of 8 and 12 degrees for the ab/adduction angle, and 10-15 degrees for the rotation angles at the hip and knee, respectively. Furthermore, the magnitude of errors in ab/adduction and rotation angles are a function of the flexion angle. The errors for the ab/adduction angles increase with increasing flexion angle and for the rotation angle, decrease with increasing flexion angle. In cerebral palsy patients with flexed knee pattern of gait, this will result in distorted estimation of ab/adduction and rotation. For the helical model, similar results are obtained for the helical angle and associated direction cosines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
The Conventional Gait Model (CGM) needs to benefit from large investigations on localization of the hip joint centre (HJC). Incorrect positions from the native equations were demonstrated (Sangeux et al., 2014; Harrington et al., 2007). More accurate equations were proposed but their impact on kinematics and kinetic CGM outputs was never evaluated. This short communication aims at examining if adoption of new HJC equations would alter standard CGM outputs. Sixteen able bodied participants underwent a full 3-D optoelectronic gait analysis followed by a 3-D ultrasound localization of their hips. Data were processed through the open source python package pyCGM2 replicating kinematic and kinetic processing of the native CGM. Compared with 3D ultrasound location, Hara equations improved the accuracy of sagittal plane kinematics (0.6°) and kinetics (0.02 N m kg−1) for the hip. The worst case participant exhibited Harrington’s equations reached a deviation of 3° for the sagittal kinematics. In the coronal plane, Hara and Harrington equations presented similar differences (1°) for the hip whilst Davis equations had the largest deviation for hip abduction (2.7°) and hip abductor moment (0.10 N m kg−1).Both Harrington and Hara equations improved the CGM location of the HJC. Hara equations improved results in the sagittal plane, plus utilise a single anthropometrics measurement, leg length, that may be more robust. However, neither set of equations had significant effect on kinematics. We reported some effects on kinetics, particularly in the coronal plane, which warrant caution in interpreting outputs using different sets of equations.  相似文献   

11.
The effect of swelling of articular cartilage, caused by the fixed charge density (FCD) of proteoglycans, has not been demonstrated on knee joint mechanics during simulated walking before. In this study, the influence of the depth-wise variation of FCD was investigated on the internal collagen fibril strains and the mechanical response of the knee joint cartilage during gait using finite element (FE) analysis. The FCD distribution of tibial cartilage was implemented from sodium (23Na) MRI into a 3-D FE-model of the knee joint (“Healthy model”). For comparison, models with decreased FCD values were created according to the decrease in FCD associated with the progression of osteoarthritis (OA) (“Early OA” and “Advanced OAmodels). In addition, a model without FCD was created (“No FCDmodel). The effect of FCD was studied with five different collagen fibril network moduli of cartilage. Using the reference fibril network moduli, the decrease in FCD from “Healthy model” to “Early OA” and “Advanced OA” models resulted in increased axial strains (by +2 and +6%) and decreased fibril strains (by −3 and −13%) throughout the stance, respectively, calculated as mean values through cartilage depth in the tibiofemoral contact regions. Correspondingly, compared to the “Healthy model”, the removal of the FCD altogether in “NoFCD model” resulted in increased mean axial strains by +16% and decreased mean fibril strains by −24%. This effect was amplified as the fibril network moduli were decreased by 80% from the reference. Then mean axial strains increased by +6, +19 and +49% and mean fibril strains decreased by −9, −20 and −32%, respectively. Our results suggest that the FCD in articular cartilage has influence on cartilage responses in the knee during walking. Furthermore, the FCD is suggested to have larger impact on cartilage function as the collagen network degenerates e.g. in OA.  相似文献   

12.
The primary purpose of this project was to examine whether lower extremity joint kinetic factors are related to the walk-run gait transition during human locomotion. Following determination of the preferred transition speed (PTS), each of the 16 subjects walked down a 25-m runway, and over a floor-mounted force platform at five speeds (70, 80, 90, 100, and 110% of the PTS), and ran over the force platform at three speeds (80, 100, and 120% of the PTS) while being videotaped (240 Hz) from the right sagittal plane. Two-dimensional kinematic data were synchronized with ground reaction force data (960 Hz). After smoothing, ankle and knee joint moments and powers were calculated using standard inverse dynamics calculations. The maximum dorsiflexor moment was the only variable tested that increased as walking speed increased and then decreased when gait changed to a run at the PTS, meeting the criteria set to indicate that this variable influences the walk-run gait transition during human locomotion. This supports previous research suggesting that an important factor in changing gaits at the PTS is the prevention of undue stress in the dorsiflexor muscles.  相似文献   

13.
People with a transtibial amputation (TTA) have altered motion during daily tasks, which may be influenced by prosthetic alignment. This study aimed to determine the effect of medial/lateral prosthetic alignment shifts on muscle activity, measured by integrated electromyography (iEMG), and to compare muscle activity between people with and without TTA during sit-to-stand. We quantified ground reaction forces and three-dimensional center-of-mass position to interpret muscle activity results. Compared to the prescribed alignment, the bilateral knee extensors had greater activity in the medial alignment (p < 0.001) and the amputated side gluteus medius and less activity in the lateral alignment (p = 0.035), which may be a result of altered muscular requirements for postural control. In people with TTA, smaller intact side gluteus medius activity was associated with frontal plane motion of the center-of-mass, which was not observed in non-amputees. Compared to non-amputees, people with TTA had greater iEMG in the intact side tibialis anterior (p = 0.031) and amputated side rectus femoris (p < 0.001), which may be required to brake the body center-of-mass in the absence of amputated side tibialis anterior. These results suggest that lateral alignment shifts may reduce muscle activity during sit-to-stand for people with TTA and emphasize the importance of analyzing sit-to-stand in three dimensions.  相似文献   

14.
Measurement variability estimates for 18 different anthropometric dimensions were collected within the context of an ongoing longitudinal in vestigation of preschool Guatemalan children. Estimates of total measurement variance, intra-observer variance, and short-term intra-subject variance are presented for each variable. A simple procedure for the evaluation of measurement variance in cross-sectional and longitudinal investigations is described in which the total measurement variance is expressed as a percentage of the appropriate inter-subject variance. This statistic serves as an index of the relative reproducibility of anthropometric variables.  相似文献   

15.
Biomechanical model assumptions affect the interpretation of the role of the muscle or joint moments to the segmental power estimated by induced acceleration analysis (IAA). We evaluated the effect of modeling the pelvis and trunk segments as two separate segments (8 SM) versus as a single segment (7 SM) on the segmental power, support of the body, knee and hip extension acceleration produced by the joint moments during the stance phase of normal walking. Significant differences were observed in the contribution of the stance hip abductor and extensor moments to support, ipsilateral knee and hip acceleration, and ipsilateral thigh and upper body power. The primary finding was that the role of the stance hip moment in generating ipsilateral thigh and upper body power differed based on degrees of freedom in the model. Secondarily, the magnitude of contributions also differed. For example, the hip abductor and extensor moments showed greater contribution to support, hip and knee acceleration in the 8 SM. IAA and segment power analysis are sensitive to the degrees of freedom between the pelvis and trunk. There is currently no gold standard by which to evaluate the accuracy of IAA predictions. However, modeling the pelvis and trunk as separate segments is closer to the anatomical architecture of the body. An 8 SM appears to be more appropriate for estimating the role of joint moments, particularly to motion of more proximal segments during normal walking.  相似文献   

16.
Site-specific variation of collagen fibril orientations can affect cartilage stresses in knee joints. However, this has not been confirmed by 3-D analyses. Therefore, we present a novel method for evaluation of the effect of patient-specific collagen architecture on time-dependent mechanical responses of knee joint cartilage during gait. 3-D finite element (FE) models of a human knee joint were created with the collagen architectures obtained from T2 mapped MRI (patient-specific model) and from literature (literature model). The effect of accuracy of the implementation of collagen fibril architecture into the model was examined by using a submodel with denser FE mesh. Compared to the literature model, fibril strains and maximum principal stresses were reduced especially in the superficial/middle regions of medial tibial cartilage in the patient-specific model after the loading response of gait (up to ?413 and ?26%, respectively). Compared to the more coarsely meshed joint model, the patient-specific submodel demonstrated similar strain and stress distributions but increased values particularly in the superficial cartilage regions (especially stresses increased >60%). The results demonstrate that implementation of subject-specific collagen architecture of cartilage in 3-D modulates location- and time-dependent mechanical responses of human knee joint cartilage. Submodeling with more accurate implementation of collagen fibril architecture alters cartilage stresses particularly in the superficial/middle tissue.  相似文献   

17.
The hamstring muscles have been recognized as an important element in compensating for the loss of stability in the ACL-deficient knee, but it is still not clear whether the hamstring muscle force can completely compensate for the loss of ACL, and the consequences of increased hamstring muscle force. A two-dimensional anatomical knee model in the sagittal plane was developed to examine the effect of various levels of hamstring muscle activation on restraining anterior tibial translation in the ACL-deficient knee during level walking. The model included the tibiofemoral and patellofemoral joints, four major ligaments, the medial capsule, and five muscle units surrounding the knee. Simulations were conducted to determine anterior tibial translation and internal joint loading at a single selected position when the knee was under a peak external flexion moment during early stance phase of gait. Incremental hamstring muscle forces were applied to the modeled normal and the ACL-deficient knees. Results of simulations showed that the ACL injury increased the anterior tibial translation by 11.8mm, while 56% of the maximal hamstring muscle force could reduce the anterior translation of the tibia to a normal level during the stance phase of gait. The consequences of increased hamstring muscle force included increased quadriceps muscle force and joint contact force.  相似文献   

18.
Hip dynamics in the intact limb during the beginning of stance phase in unilateral trans-tibial amputees (TTA) was studied to evaluate its contribution to compensatory function. We hypothesized (1) an increase in hip total work during H1 power phase (0-30% of gait cycle) including an initial negative phase and (2) an intensification of the hip work in response to uncomfortable gait induced by prosthesis misalignment. Three-dimensional gait analysis was conducted in 17 unilateral TTA and 15 healthy subjects walking at the same self-selected speed in three prosthetic alignments: initial alignment (IA); IA altered either by 6 degrees of internal rotation (IR) or by 6 degrees of external rotation. Patients reported best comfort of gait in IA condition and discomfort mainly in IR condition. During the H1 power phase, in intact limbs a consistent initial flexion movement of the hip (0-8% gait cycle) was associated to negative work and was followed by hip extension and positive work whereas in both prosthetic and control limbs only hip extension and positive work occurred (except in one healthy individual). Absolute value of hip work during H1 phase was significantly higher in intact and prosthetic limbs compared to control limbs in IA condition and was further significantly increased in IR condition only in intact limbs demonstrating a compensatory function of the latter. In intact limbs, early hip negative work contributed to energy absorption in addition to the knee joint probably to compensate the lower energy absorption exerted by the prosthetic limbs.  相似文献   

19.
The menisci play an important role in load distribution, load bearing, joint stability, lubrication, and proprioception. Partial meniscectomy has been shown to result in changes in the kinematics and kinetics at the knee during gait that can lead to progressive meniscal degeneration. This study examined changes in the strains within the menisci associated with kinematic and kinetic changes during the gait cycle. The gait changes considered were a 5 deg shift toward external rotation of the tibia with respect to the femur and an increased medial-lateral load ratio representing an increased adduction moment. A finite element model of the knee was developed and tested using a cadaveric specimen. The cadaver was placed in positions representing heel-strike and midstance of the normal gait, and magnetic resonance images were taken. Comparisons of the model predictions to boundaries digitized from images acquired in the loaded states were within the errors produced by a 1 pixel shift of either meniscus. The finite element model predicted that an increased adduction moment caused increased strains of both the anterior and posterior horns of the medial meniscus. The lateral meniscus exhibited much lower strains and had minimal changes under the various loading conditions. The external tibial rotational change resulted in a 20% decrease in the strains in the posterior medial horn and increased strains in the anterior medial horn. The results of this study suggest that the shift toward external tibial rotation seen clinically after partial medial meniscectomy is not likely to cause subsequent degenerative medial meniscal damage, but the consequence of this kinematic shift on the pathogenesis of osteoarthritis following meniscectomy requires further consideration.  相似文献   

20.
The widespread use and dramatic success of prosthetic joint implant surgery (arthroplasty) has greatly improved the quality of life for many individuals suffering from degenerative, arthritic, or injured joints. However, in a number of cases, recipients experience discomfort at the arthroplasty site that can signal biomechanical failure, or periprosthetic infection of the joint, or both. In fact, infection remains a devastating obstacle, preventing arthroplasty from being an almost perfect medical procedure. Existing tests for the diagnosis of infection in orthopedics are disappointing because of the relatively high frequency of false negative results. To overcome this shortcoming, and to reduce the number of infected revision arthroplasties, a methodology based on molecular biology has been established. The method allows the rapid, sensitive, and accurate diagnosis of orthopedic infections, and should aid the clinician with treatment regimens, surgical decisions, and overall patient management in the growing arthroplasty population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号