首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-linking of the B cell AgR results in activation of mature B cells and tolerization of immature B cells. The initial signaling events stimulated by membrane immunoglobulin (mIg) cross-linking are tyrosine phosphorylation of a number of proteins. Among the targets of mIg-induced tyrosine phosphorylation are the tyrosine kinases encoded by the lyn, blk, fyn, and syk genes, the mIg-associated proteins MB-1 and Ig-beta, phospholipase C-gamma 1 and -gamma 2, as well as many unidentified proteins. In this report we show that mIg cross-linking also regulates phosphatidylinositol 3-kinase (PtdIns 3-kinase), an enzyme that phosphorylates inositol phospholipids and plays a key role in mediating the effects of tyrosine kinases on growth control in fibroblasts. Cross-linking mIg on B lymphocytes greatly increased the amount of PtdIns 3-kinase activity which could be immunoprecipitated with anti-phosphotyrosine (anti-tyr(P) antibodies. This response was observed after mIg cross-linking in mIgM- and mIgG-bearing B cell lines and after cross-linking either mIgM or mIgD in murine splenic B cells. Thus, regulation of PtdIns 3-kinase is a common feature of signaling by several different isotypes of mIg. This response was rapid and peaked 2 to 3 min after the addition of anti-Ig antibodies. The anti-Ig-stimulated increase in PtdIns 3-kinase activity associated with anti-Tyr(P) immunoprecipitates could reflect increased tyrosine phosphorylation of PtdIns 3-kinase, increased activity of the enzyme, or both. In favor of the first possibility, the tyrosine kinase inhibitor herbimycin A blocked the increase in ant-Tyr(P)-immunoprecipitated PtdIns 3-kinase activity as well as the anti-Ig-induced tyrosine phosphorylation. Moreover, this response was not secondary to phospholipase C activation but rather seemed to be a direct consequence of mIg-induced tyrosine phosphorylation. Activation of the phosphoinositide pathway by a transfected M1 muscarinic acetylcholine receptor expressed in WEHI-231 B lymphoma cells did not increase the amount of PtdIns 3-kinase activity which could be precipitated with anti-Tyr(P) antibodies. Similarly, inhibition of the phosphoinositide pathway did not abrogate the ability of mIg cross-linking to stimulate this response. Thus, mIg-induced tyrosine phosphorylation regulates PtdIns 3-kinase, an important mediator of growth control in fibroblasts and potentially an important regulatory component in B cells as well.  相似文献   

2.
3.
B cell activation after Ag binding to membrane Ig (mIg) is mediated by a complex series of events that involves proximal activation of a tyrosine kinase and phospholipase C. Until recently it was unclear how mIgM and mIgD, with their limited cytoplasmic domains (three amino acids on each H chain), were able to couple to these secondary signal transducers. Studies of murine B cells conducted in several laboratories, including our own, suggest that products of the mb-1 (IgM-alpha or IgD-alpha) and B29 (Ig-beta, Ig-gamma) genes occur as disulfide-linked alpha/beta and alpha/gamma heterodimers that are noncovalently associated with mIgM and mIgD. Although studies utilizing Daudi and Raji cell lines indicate that human mIgM is also associated with a dimer containing the mb-1 gene product, the other molecules associated with the human receptor have not been identified. In this report we characterize the phosphoproteins that are noncovalently associated with mIgM on human tonsillar B cells and human pre-B cell lines. mIgM is noncovalently associated with a disulfide-linked heterodimer composed of variably glycosylated forms of two core proteins with apparent molecular mass of 26.5 and 27 kDa. Western blotting analysis reveals that the lower m.w. component of each of the mIgM-associated heterodimers and its 27-kDa deglycosylated core protein are reactive with antibodies against the murine B29 gene product. Thus, a product of the B29 gene is a component of the AgR complex in human and murine B cells, occurring as a disulfide linked dimer with product(s) of the mb-1 gene. Interestingly, mb-1 and B29 gene products expressed on human cells are much more heterogenously N-glycosylated than their murine B cell counterparts.  相似文献   

4.
Engagement of the B-cell antigen receptor complex induces immediate activation of receptor-associated Src family tyrosine kinases including p55blk, p59fyn, p53/56lyn, and perhaps p56lck, and this response is accompanied by tyrosine phosphorylation of distinct cellular substrates. These kinases act directly or indirectly to phosphorylate and/or activate effector proteins including p42 (microtubule-associated protein kinase) (MAPK), phospholipases C-gamma 1 (PLC gamma 1) and C-gamma 2 (PLC gamma 2), phosphatidylinositol 3-kinase (PI 3-K), and p21ras-GTPase-activating protein (GAP). Although coimmunoprecipitation results indicate that the Src family protein tyrosine kinases interact physically with some of these effector molecules, the molecular basis of this interaction has not been established. Here, we show that three distinct sites mediate the interaction of these kinases with effectors. The amino-terminal 27 residues of the unique domain of p56lyn mediate association with PLC gamma 2, MAPK, and GAP. Binding to PI 3-K is mediated through the Src homology 3 (SH3) domains of the Src family kinases. Relatively small proportions of cellular PI 3-K, PLC gamma 2, MAPK, and GAP, presumably those which are tyrosine phosphorylated, bind to the SH2 domains of these kinases. Comparative analysis of binding activities of Blk, Lyn, and Fyn shows that these kinases differ in their abilities to associate with MAPK and PI 3-K, suggesting that they may preferentially bind and subsequently phosphorylate distinct sets of downstream effector molecules in vivo. Fast protein liquid chromatography Mono Q column-fractionated MAPK maintains the ability to bind bacterially expressed Lyn, suggesting that the two kinases may interact directly.  相似文献   

5.
BAL17 B lymphoma cells, representing mature B lymphocytes, were used to analyze the role of tyrosine kinase in B cell activation. Anti-IgM-induced tyrosine phosphorylation was inhibited by preincubation of cells with tyrosine kinase inhibitor herbimycin A. Enzymatic activity of lyn protein was also inhibited by this drug, accompanied by down-regulation of p53lyn and p56lyn. However, a protein kinase C-mediated event was intact in the herbimycin A-pretreated cells, suggesting that the inhibitor acts selectively on tyrosine kinase. Anti-IgM failed to stimulate herbimycin A-pretreated cells to induce increases in inositol phospholipid metabolism or increased [Ca2+]i, whereas aluminum fluoride-induced metabolism was not altered. Moreover, membrane IgM density as revealed by flow cytometry was not changed by herbimycin A. These results indicate that tyrosine kinase(s) participates in the coupling of an Ag receptor cross-linkage to phospholipase C activation through a phosphorylation event in B lymphoma cells.  相似文献   

6.
Mice lacking protein tyrosine phosphatase alpha (PTPalpha) exhibited defects in NMDA receptor (NMDAR)-associated processes such as learning and memory, hippocampal neuron migration, and CA1 hippocampal long-term potentiation (LTP). In vivo molecular effectors linking PTPalpha and the NMDAR have not been reported. Thus the involvement of PTPalpha as an upstream regulator of NMDAR tyrosine phosphorylation was investigated in synaptosomes of wild-type and PTPalpha-null mice. Tyrosine phosphorylation of the NMDAR NR2A and NR2B subunits was reduced upon PTPalpha ablation, indicating a positive effect of this phosphatase on NMDAR phosphorylation via intermediate molecules. The NMDAR is a substrate of src family tyrosine kinases, and reduced activity of src, fyn, yes and lck, but not lyn, was apparent in the absence of PTPalpha. In addition, autophosphorylation of proline-rich tyrosine kinase 2 (Pyk2), a tyrosine kinase linked to NMDAR signaling, was also reduced in PTPalpha-deficient synaptosomes. Altered protein tyrosine phosphorylation was not accompanied by altered expression of the NMDAR or the above tyrosine kinases at any stage of PTPalpha-null mouse development examined. In a human embryonic kidney (HEK) 293 cell expression system, PTPalpha enhanced fyn-mediated NR2A and NR2B tyrosine phosphorylation by several-fold. Together, these findings provide evidence that aberrant NMDAR-associated functions in PTPalpha-null mice are due to impaired NMDAR tyrosine phosphorylation resulting from the reduced activity of probably more than one of the src family kinases src, fyn, yes and lck. Defective NMDAR activity in these mice may also be linked to the loss of PTPalpha as an upstream regulator of Pyk2.  相似文献   

7.
Several lines of evidence link the protein tyrosine kinase p59fyn to the T-cell receptor. The molecular basis of this interaction has not been established. Here we show that the tyrosine kinase p59fyn can associate with chimeric proteins that contain the cytoplasmic domains of CD3 epsilon, gamma, zeta (zeta), and eta. Mutational analysis of the zeta cytoplasmic domain demonstrated that the membrane-proximal 41 residues of zeta are sufficient for p59fyn binding and that at least two p59fyn binding domains are present. The association of p59fyn with the zeta chain was specific, as two closely related Src family protein tyrosine kinases, p60src and p56lck, did not associate with a chimeric protein that contained the cytoplasmic domain of zeta. Mutational analysis of p59fyn revealed that a 10-amino-acid sequence in the unique amino-terminal domain of p59fyn was responsible for the association with zeta. These findings support evidence that p59fyn is functionally and structurally linked to the T-cell receptor. More importantly, these studies support a critical role for the unique amino-terminal domains of Src family kinases in the coupling of tyrosine kinases to the signalling pathways of cell surface receptors.  相似文献   

8.
The B‐cell antigen receptor (BCR), displayed on the plasma membrane of mature B cells of the mammalian immune system, is a multimeric complex consisting of a membrane‐bound immunoglobulin (mIg) noncovalently associated with the Igα/Igβ heterodimer. In this study, we engineered transgenic tobacco plants expressing all four chains of the BCR. ELISA, Western blotting and confocal microscopy demonstrated that the BCR was correctly assembled in plants, predominantly in the plasma membrane, and that the noncovalent link was detergent sensitive. This is the first example of a noncovalently assembled plasma membrane‐retained heterologous receptor in plants. In B cells of the mammalian immune system, following antigen binding to mIg, BCR is internalized and tyrosine residues on Igα and Igβ are phosphorylated activating a signaling cascade through interaction with protein kinases that ultimately leads to the initiation of gene expression. Expression of the BCR may therefore be an important tool for the study of plant endocytosis and the identification of previously unknown plant tyrosine kinases. The specificity and diversity of the antibody repertoire, coupled to the signal transduction capability of the Igα/Igβ heterodimer, also indicates that plants expressing BCR may in future be developed as environmental biosensors.  相似文献   

9.
A peptide derived from p34cdc2, cdc2(6-20)NH2 with the amino acid sequence of KVEKIGEGTYGVVYK-amide, was found to be a specific and efficient substrate for a pp60c-src-related protein tyrosine kinase from bovine spleen (STK). Glu-12 and Thr-14 were identified to be substrate specificity determinants in this peptide (Cheng, H.-C., Litwin, C. M. E., Hwang, D. M., and Wang, J. H. (1991) J. Biol. Chem. 266, 17919-17925). In this study, we demonstrated the presence of cdc2(6-20)NH2 peptide tyrosine kinase activity in the membrane fractions of bovine brain, spleen, thymus, lung, liver, and kidney. Hydroxylapatite column chromatography of thymus membrane extract revealed four protein tyrosine kinases, TK-I, TK-II, TK-III, and TK-IV, with different relative activities toward cdc2(6-20)NH2 and a general tyrosine kinase substrate, poly(Glu/Tyr). Only TK-I and TK-II showed significant activity toward cdc2(6-20)NH2, they were suggested as belonging to the src-family by virtue of their cross-reactivity with an antibody against a synthetic peptide corresponding to a conserved sequence of src-family kinases. Further immunological characterization using antibodies specific to individual src-related protein tyrosine kinases suggested that TK-I, TK-II, and STK are bovine homologs of p56lck, p55fyn, and p56lyn, respectively. Substrate specificity and kinetic characterization of src-family tyrosine kinases including human platelet pp60c-src, bovine p56lyn, p56lck, and p55fyn, as well as several non-src-related tyrosine kinases including epidermal growth factor receptor, p43v-abl, TK-III, and TK-IV showed that all the src-family tyrosine kinases but none of the other kinases displayed efficient cdc2(6-20)NH2 phosphorylation. In all cases, the high efficiency of cdc2(6-20)NH2 peptide phosphorylation could be markedly attenuated when Glu-12 and Thr-14 of the peptide were substituted, respectively, by valine and serine.  相似文献   

10.
In this study, we demonstrate that the phosphorylation activity of five tyrosine kinases of the src family from both human erythrocytes (lyn, hck and c-fgr) and bovine synaptosomes (lyn and fyn) was stimulated by treatment with 30-250 microM peroxynitrite. This effect was not observed with syk, a non-src family tyrosine kinase. Treatment of kinase immunoprecipitates with 0.01-10 microM peroxynitrite showed that the interaction of these enzymes with the oxidant also activated the src kinases. Higher concentrations of peroxynitrite inhibited the activity of all kinases, indicating enzyme inactivation. The addition of bicarbonate (1.3 mM CO2) did not modify the upregulation of src kinases but significantly protected the kinases against peroxynitrite-mediated inhibition. Upregulation of src kinase activity by 1 microM peroxynitrite was 3.5-5-fold in erythrocytes and 1.2-2-fold in synaptosomes, but this could be the result, at least in part, of the higher basal level of src kinase activity in synaptosomes. Our results indicate that peroxynitrite can upregulate the tyrosine phosphorylation signal through the activation of src kinases.  相似文献   

11.
The development of autoimmunity is correlated with heightened sensitivity of B cells to B cell Ag receptor (BCR) cross-linking. BCR signals are down-regulated by Lyn, which phosphorylates inhibitory receptors. lyn(-/-) mice have reduced BCR signaling thresholds and develop autoantibodies, glomerulonephritis, splenomegaly due to myeloid hyperplasia, and increased B-1 cell numbers. Bruton's tyrosine kinase (Btk), a critical component of BCR signaling pathways, is required for autoantibody production in lyn(-/-) mice. It is unclear whether Btk mediates autoimmunity at the level of BCR signal transduction or B cell development, given that lyn(-/-)Btk(-/-) mice have a severe reduction in conventional B and B-1 cell numbers. To address this issue, we crossed a transgene expressing a low dosage of Btk (Btk(low)) in B cells to lyn(-/-)Btk(-/-) mice. Conventional B cell populations were restored to levels similar to those in lyn(-/-) mice. These cells were as hypersensitive to BCR cross-linking as lyn(-/-) B cells as measured by proliferation, Ca(2+) flux, and activation of extracellular signal-regulated kinase and Akt. However, lyn(-/-)Btk(low) mice did not produce anti-ssDNA, anti-dsDNA, anti-histone, or anti-histone/DNA IgM or IgG. They also lacked B-1 cells and did not exhibit splenomegaly. Thus, B cell hyperresponsiveness is insufficient for autoimmunity in lyn(-/-) mice. These studies implicate B-1 and/or myeloid cells as key contributors to the lyn(-/-) autoimmune phenotype.  相似文献   

12.
Treatment of B lymphocytes with antibodies to membrane immunoglobulin (Ig) stimulates protein tyrosine phosphorylation. We have examined the phosphorylation in vitro of proteins associated with membrane Ig. The Src family protein tyrosine kinases p53/56lyn, p59fyn, and p56lck are associated with membrane Ig in spleen B cells and B-cell lines and undergo phosphorylation in vitro. The pattern of expression of Src family protein tyrosine kinases in B cells varied. Our studies suggest that multiple kinases can potentially interact with membrane Ig and that within any one B-cell type, all of the Src family kinases expressed can be found in association with membrane Ig. We also observed that the Ig-associated Ig alpha protein, multiple forms of Ig beta, and proteins of 100 and 25 kDa were tyrosine phosphorylated in vitro. The 100- and 25-kDa proteins remain unidentified.  相似文献   

13.
In latently infected growth-transformed human lymphocytes, Epstein-Barr virus (EBV) encodes two integral plasma membrane proteins: LMP1, which constitutively induces B-lymphocyte activation and intercellular adhesion, and LMP2A, which associates with LMP1 and is a tyrosine kinase substrate. We now demonstrate that LMP2A associates with src family protein tyrosine kinases, particularly lyn kinase, in nonionic detergent extracts of transfected B lymphoma cells or in extracts of EBV-transformed B lymphocytes. The LMP2A and tyrosine kinase association is stable in nonionic detergents and includes a 70-kDa cell protein which is also an in vitro or in vivo kinase substrate. This LMP2A association with B-lymphocyte src family tyrosine kinases is likely to be an important pathway in EBV's effects on cell growth.  相似文献   

14.
Expression of the CD45 tyrosine protein phosphatase is required for the response of functional lymphocytes to stimulation through the antigen receptor. One or more of its substrates may therefore be essential for signal transduction during lymphocyte activation. We have studied the phosphorylation of the closely related lck, fyn, and c-src tyrosine protein kinases in leukemic murine T-cell lines that have lost the expression of CD45. The phosphorylation of the lck kinase at an inhibitory site of tyrosine phosphorylation, Tyr-505, was increased by two-, six-, and eightfold in three different cell lines. Phosphorylation of the fyn kinase at the homologous site, Tyr-531, was unaltered in one of these cell lines, but increased by 2.5-fold in the two others. The phosphorylation of p60c-src at the homologous tyrosine was essentially unchanged in the one CD45-negative cell line in which it was examined. The expression of CD45 therefore regulates the phosphorylation and potentially the activity of the lck and fyn tyrosine protein kinases, but the effect on the lck kinase is much greater than on the fyn kinase. This finding and the observation that CD45 had no effect on the phosphorylation of p60c-src suggest that CD45 exhibits polypeptide substrate specificity in vivo. Additionally, these findings are consistent with the hypothesis that the unresponsiveness of CD45-negative lymphoid cells to antigenic stimulation is due largely to hyperphosphorylation of the lck kinase.  相似文献   

15.
Activation of T cells by specific antigens in the context of major histocompatibility complex encoded proteins is mediated by the T cell antigen receptor (TcR), consisting of a variable (Ti) and an invariant (CD3) subunits. Tyrosine phosphorylation is considered to be one of the earliest steps in TcR-mediated signal transduction. There are indications that the p60fyn protein tyrosine kinase is involved in signaling via TcR. However, enzymatic activation of the Src-related tyrosine kinases upon TcR triggering has not been shown yet, therefore the identity of TcR-activated tyrosine kinase(s) remains unclear. We demonstrate that cross-linking of CD3 activates p60fyn and induces tyrosine phosphorylation of cellular proteins in human T cells (resting peripheral T cells, a helper T cell clone, a helper T cell clone immortalized with Herpesvirus saimiri, and a leukemic T cell line). Activation of p60fyn was fast, and its maximum (2-4-fold activation as compared with the basal activity) was followed by a decline. The amount of p60fyn in the cells remained unchanged. None of the other T cell Src-related tyrosine kinases was activated after cross-linking of CD3. Activation of p60fyn was induced by anti-CD3, but not by anti-CD4, anti-CD2, or anti-CD28. The activation was correlated with an increase of the phosphotyrosine content of p60fyn. These studies provide direct proof for the functional association between p60fyn and the TcR.  相似文献   

16.
The ryanodine receptor of Jurkat T lymphocytes was phosphorylated on tyrosine residues upon stimulation of the cells via the T cell receptor/CD3 complex. The tyrosine phosphorylation was transient, reaching a maximum at 2 min, and rapidly declined thereafter. In co-immunoprecipitates of the ryanodine receptor, the tyrosine kinases p56(lck) and p59(fyn) were detected. However, only p59(fyn) associated with the ryanodine receptor in a stimulation-dependent fashion. Both tyrosine kinases, recombinantly expressed as glutathione S-transferase (GST) fusion proteins, phosphorylated the immunoprecipitated ryanodine receptor in vitro. In permeabilized Jurkat T cells, GST-p59(fyn), but not GST-p56(lck), GST-Grb2, or GST alone, significantly and concentration-dependently enhanced Ca(2+) release by cyclic ADP-ribose. The tyrosine kinase inhibitor PP2 specifically blocked the effect of GST-p59(fyn). This indicates that intracellular Ca(2+) release via ryanodine receptors may be modulated by tyrosine phosphorylation during T cell activation.  相似文献   

17.
Signal transduction via the B cell AgR complex has recently been shown to be dependent on the activation of one or more protein tyrosine kinases. Similarly, it has been found that signal transduction requires the expression of the protein tyrosine phosphatase CD45. Thus, transduction of a signal after AgR cross-linking must involve the coordinate interaction of these two enzymatic activities. It is therefore logical to hypothesize that the competence of the B cell to respond to ligands that bind the AgR may be dependent on the maintenance of an equilibrium between the tyrosine phosphorylation and dephosphorylation of specific signal transduction components. We have demonstrated in the present study that in resting B cells, the basal level of AgR complex tyrosine phosphorylation is regulated by cellular protein tyrosine phosphatases. Treatment of cells with the protein tyrosine phosphatase inhibitor, Na3VO4, resulted in rapid hyperphosphorylation of the receptor complex. Based on this observation, experiments were designed to examine the role of CD45 in regulation of AgR complex phosphorylation. Treatment of B cells with anti-CD45 mAb alone was found to have no effect on cytoskeletal association of CD45 or on its distribution within the membrane. Addition of a secondary cross-linking reagent, however, induced the association of CD45 with the cytoskeleton and caused capping. Subsequent studies demonstrated that increased tyrosine phosphorylation of the mIg-associated proteins MB-1 and B29 could be induced after incubating cells with anti-CD45 mAb and a secondary cross-linker, but not after the addition of anti-CD45 mAb alone. Changes in tyrosine phosphorylation of MB-1 and B29 were found to correlate with the cytoskeletal association of CD45. Interestingly, although cross-linking CD45 induced alterations in its association with the cytoskeleton and in its distribution within the membrane, no significant change in the level of protein tyrosine phosphatase activity could be detected under these conditions. These findings support the possibility that ligand binding to CD45 can induce biochemical and/or physical alterations in the molecule that presumably inhibit its ability to interact with specific substrates in the cell, thereby shifting the established equilibrium between tyrosine-specific phosphorylation and dephosphorylation.  相似文献   

18.
A newly isolated T-cell line (CB1) derived from a T-acute lymphoblastic leukaemia (T-ALL) patient contained cells (40% of total) which did not express the CD45 phosphotyrosine phosphatase. The cells were sorted into CD45- and CD45+ populations and shown to be clonal in origin. T-cell receptor (TCR) cross-linking or coligation of the TCR with its CD4/CD8 co-receptors induced tyrosine phosphorylation and calcium signals in CD45+ but not in CD45- cells. Unexpectedly, whole cell p56lck and p59fyn tyrosine kinase activities were not reduced in CD45- compared to CD45+ cells. A novel technique was therefore developed to isolated specific pools of aggregated receptors expressed at the cell surface, together with their associated tyrosine kinases. Using this technique it was shown that cell surface CD4-p56lck kinase activity was 78% lower in CD45- than in CD45+ cells. Phosphorylation of TCR zeta- and gamma-chains occurred in TCR immunocomplexes from CD45+ but not CD45- cells, despite comparable levels of p59fyn and TCR proteins. Furthermore, TCR-associated tyrosine kinase activity towards an exogenous substrate was 84% lower in CD45- than in CD45+ cells. Addition of recombinant p59fyn to TCR immunocomplexes isolated from CD45-cells restored the phosphorylation of the TCR zeta- and gamma-chains. Our results demonstrate that CD45 selectively regulates the pools of p59fyn and p56lck kinases which are associated with the TCR and CD4 at the cell surface. Activation by CD45 of these receptor-associated kinase pools correlates with the ability of the TCR and its coreceptors to couple to intracellular signalling pathways.  相似文献   

19.
Two src family kinases, lck and fyn, participate in the activation of T lymphocytes. Both of these protein tyrosine kinases are thought to function via their interaction with cell surface receptors. Thus, lck is associated with CD4, CD8, and Thy-1, whereas fyn is associated with the T cell antigen receptor and Thy-1. In this study, the intracellular localization of these two protein tyrosine kinases in T cells was analyzed by immunofluorescence and confocal microscopy. Lck was present at the plasma membrane, consistent with its proposed role in transmembrane signalling, and was also associated with pericentrosomal vesicles which co-localized with the cation-independent mannose 6- phosphate receptor. Surprisingly, fyn was not detected at the plasma membrane in either Jurkat T cells or T lymphoblasts but was closely associated with the centrosome and to microtubule bundles radiating from the centrosome. In mitotic cells, fyn co-localized with the mitotic spindle and poles. The essentially non-overlapping intracellular distributions of lck and fyn suggest that these kinases may be accessible to distinct regulatory proteins and substrates and, therefore, may regulate different aspects of T cell activation. Anti- phosphotyrosine antibody staining at the plasma membrane increases dramatically after CD3 cross-linking of Jurkat T cells. The localization of lck to the plasma membrane suggests that it may participate in mediating this increase in tyrosine phosphorylation, rather than fyn. Furthermore, the distribution of fyn in mitotic cells raises the possibility that it functions at the M phase of the cell cycle.  相似文献   

20.
In this study, we have examined the role of caspase-3 in apoptosis of lymphocytes induced by the chromium(III) complexes viz. tris-(1,10-phenanthroline)chromium(III) chloride (Cr(III)-phen) and trans-diaqua[1,3-bis(salicylideneamino)propanechromium(III)] perchlorate (Cr(III)-salprn). Evidence for caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage in lymphocytes exposed to Cr(III) complexes is revealed through Western blotting analysis. Blocking the activity of caspase-3 with z-DEVD-fmk, prevents apoptosis as evidenced through [3H]-thymidine incorporation, DNA fragmentation assay and measurement of sub-G1 cells by flow cytometry. Pretreatment of lymphocytes with free radical scavengers completely attenuates the activity of caspase-3 suggesting that reactive oxygen species (ROS) are upstream activators of caspase-3. Preincubation of lymphocytes with PP2, a selective Src-family tyrosine kinase inhibitor, abolishes the activation of caspase-3 indicating that Src-family tyrosine kinases viz. p56lck, p59fyn and p53/56lyn are mediators of caspase-3 activation during Cr(III) exposure. Collectively, our findings support a plausible mechanism in which Cr(III) mediates ROS generation that precedes the up-regulation of p56lck, p59fyn and p53/56lyn which eventually activates caspase-3 to promote apoptotic cell death of lymphocytes. To our knowledge, this is the first report suggesting the importance of Src-family tyrosine kinases for the activation of caspase-3 in metal-induced apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号