首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive reversed-phase high-performance liquid chromatographic method has been developed and validated for the quantitative determination of docetaxel (I) in human plasma. The concentrations in plasma, for validation procedures spiked with known amounts of I, are read from calibration curves in the range of 10–20 000 ng/ml. The sample preparation involved a liquid–liquid extraction of 1000 μl of sample with a mixture of acetonitrile–n-butylchloride (1:4, v/v). The related compound paclitaxel (II) was used as internal standard. Chromatographic separations were performed an Inertsil ODS-80A column, with UV detection performed at 230 nm. The overall extraction recoveries were 84.3 and 90.0% for I and II, respectively. The lower limit of quantitation was 10 ng/ml, and the accuracy, within-run and between-run precisions at three tested concentrations fell within the generally accepted criteria for bioanalytical assays.  相似文献   

2.
Several methods for quantification of docetaxel have been described mainly using HPLC. We have developed a new isocratic HPLC method that is as sensitive and simpler than previous methods, and applicable to use in clinical pharmacokinetic analysis. Plasma samples are spiked with paclitaxel as internal standard and extracted manually on activated cyanopropyl end-capped solid-phase extraction columns followed by isocratic reversed-phase HPLC and UV detection at 227 nm. Using this system, the retention times for docetaxel and paclitaxel are 8.5 min and 10.5 min, respectively, with good resolution and without any interference from endogenous plasma constituents or docetaxel metabolites at these retention times. The total run time needed is only 13 min. The lower limit of quantification is 5 ng/ml using 1 ml of plasma. The validated quantitation range of the method is 5–1000 ng/ml with RSDs≤10%, but plasma concentrations up to 5000 ng/ml can be accurately measured using smaller aliquots. This method is also suitable for the determination of docetaxel in urine samples under the same conditions. The method has been used to assess the pharmacokinetics of docetaxel during a phase I/II study of docetaxel in combination with epirubicin and cyclophosphamide in patients with advanced cancer.  相似文献   

3.
A rapid simple and robust reversed-phase HPLC method was developed for rapid screening in bioavailability studies or comparative bioequivalence studies. The method is specific for vancomycin as no interference from acetylsalicylic acid, paracetamol and caffeine was observed. The mean intra-day precision was from 11.7% (low concentration) to 0.3% (high concentration) and the within-day precision from 15.0 to 0.3%, determined on spiked samples. The accuracy of the method was 106.4–99.8% (intra-day) and 103.5–100.2% (inter-day).  相似文献   

4.
An improved method suitable for the determination of 8-methoxypsoralen in the range 50–1500 ng/ml in the plasma of psoriatic patients undergoing PUVA (psoralens and long-wave ultraviolet light) therapy is proposed. A 5-ml aliquot of plasma containing sodium citrate as anticoagulant was centrifuged, griseofulvin was added as internal standard and the sample was denatured with acetonitrile. The supernatant was applied to C18 cartridges and 8-methoxypsoralen was eluted with methanol. The evaporated eluate was reconstituted in the mobile phase for high-performance liquid chromatography (HPLC) and applied to the HPLC column: mobile phase, acetonitrile—0.01 M phosphoric acid (34:66); flow-rate, 1 ml/min; temperature, 40°C; column, Spherisorb 5 ODS, 100 mm × 4.6 mm I.D., 5 μm particle size; UV detection at 248 nm; detection limit, 15 ng/ml of plasma.  相似文献   

5.
A high-performance liquid chromatographic method for the quantitation of finasteride in human plasma is presented. The method is based on liquid–liquid extraction with hexane–isoamylalcohol (98:2, v/v) and reversed-phase chromatography with spectrophotometric detection at 210 nm. The mobile phase consists of acetonitrile–15 mM potassium dihydrogenphosphate (40:60, v/v). Clobazam is used as the internal standard. The limit of quantitation is 4 ng/ml and the calibration curve is linear up to 300 ng/ml. Within-day and between-day precision expressed by relative standard deviation is less than 5% and inaccuracy does not exceed 8%. The assay was used for pharmacokinetic studies.  相似文献   

6.
A rapid, simple method for the measurement of paroxetine in human plasma by reversed-phase high-performance liquid chromatography (HPLC) with fluorescence detection is described. This method includes only one-step extraction of paroxetine and dibucaine, an internal standard, with chloroform. Their recoveries were around 90%. The mobile phase, 10 mM phosphate buffer–acetonitrile (40:60, v/v) was eluted isocratically. Between- and within-day coefficients of variation were in the range of 1.9–9.4% and 2.3–13.3%, respectively. The detection limit was 0.2 ng/ml. The method we describe can be easily applied to the measurement of plasma paroxetine concentration for pharmacokinetic studies as well as for therapeutic drug monitoring in patients taking paroxetine.  相似文献   

7.
A high-performance liquid chromatographic method for the quantitation of nimesulide in human plasma is presented. The method is based on protein precipitation with methanol and reversed-phase chromatography with spectrophotometric detection at 404 nm. The separation was performed on a Nucleosil 120-5 C18, 50×4-mm I.D. column and the mobile phase consisted of acetonitrile–methanol–15 mM potassium dihydrogenphosphate buffer, pH 7.3 (30:5:65, v/v). Only 250 μl of plasma are used for sample preparation and no internal standard is necessary. The limit of quantitation is 80 ng/ml and the calibration curve is linear up to 10 000 ng/ml. More than 20 samples can be analysed within 1 h. Within-day and between-day precision expressed by relative standard deviation is less than 5% and inaccuracy does not exceed 8%. The assay was used for pharmacokinetic studies.  相似文献   

8.
A rapid, selective and reproducible high-performance liquid chromatographic (HPLC) method with ultraviolet detection was developed for the determination of the anti-cancer agent Taxotere in biological fluids. The method involves a solid-phase extraction step (C2 ethyl microcolumns) using a Varian Advanced Automated Sample Processor (AASP) followed by reversed-phase HPLC. The validated quantitation range of the method is 10–2500 ng/ml in plasma with coefficients of variation ≤ 11%. The method is also suitable for the determination of Taxotere in urine samples under the same conditions. The method was applied in a phase I tolerance study of Taxotere in cancer patients, allowing the pharmacokinetic profile of Taxotere to be established.  相似文献   

9.
10.
Gabapentin (GBP) is a new antiepileptic drug approved for clinical treatment of partial seizures in the USA. Serum GBP concentrations in 283 patients were studied using high-performance liquid chromatography with fluorescence detection. The standard curves were linear over a range of 60 ng to 15 μg/ml. The coefficient of variations were 3.4 to 8.8% and 1.4 to 9.8% for intra- and inter-assay studies, respectively. The lower limit of quantitation was 10 ng/ml. Of the 283 patients studied, 72.5% had GBP levels between 2 and 10 μg/ml, 14.8% were below 2 μg/ml and 12.7% above 10 μg/ml. The mean±S.E. of GBP in 283 patients was 5.38±0.23 μg/ml. Peak concentrations of more than 15 μg/ml and trough levels as low as 0.1 μg/ml were not uncommon. The method described was rapid, simple, highly sensitive and reproducible. Other antiepileptic drugs and endogenous compounds did not interfere with the assay.  相似文献   

11.
A high-performance liquid chromatographic method with fluorescence detection for the determination of tamsulosin in human plasma is reported. The sample preparation involved liquid-liquid extraction of tamsulosin from alkalised plasma with butyl acetate and back-extraction of the drug to the phosphate buffer (pH 2). Butyl acetate is preferable to more commonly used ethyl acetate because of its much lower solubility in water. Liquid chromatography was performed on an octadecylsilica column (55 mm x 4 mm, 3 microm particles), the mobile phase consisted of acetonitrile-30 mM dihydrogenpotassium phosphate (25:75 v/v). The run time was 3.5 min. The fluorimetric detector was operated at 228/326 nm (excitation/emission wavelength). An analogue of tamsulosin, (R)-5-[2-[(3-(2-ethoxyphenoxy)propyl)amino]-2-methylethyl]-2-methoxybenzensulfonamide was used as the internal standard. The limit of quantitation was 0.4 ng/ml using 1 ml of plasma. Within-day and between-day precision expressed by relative standard deviation was less than 10% and inaccuracy did not exceed 5%. The assay was applied to the analysis of samples from several pharmacokinetic studies.  相似文献   

12.
Three extraction procedures were developed for the quantitative determination of a carboxylic acid containing analyte (I) in human plasma by high-performance liquid chromatography (HPLC) with negative ion electrospray tandem mass spectrometry (MS–MS). The first procedure was based on the manual liquid–liquid extraction (LLE) of the acidified plasma samples with methyl tert.-butyl ether. The second procedure was based on the automation of the manual LLE procedure using 96-well collection plates and a robotic liquid handling system. The third approach was based on automated solid-phase extraction (SPE) using 96-well SPE plates and a robotic liquid handling system. A lower limit of quantitation of 50 pg/ml was achieved using all three extraction procedures. The total time required to prepare calibration curve standards, aliquot the standards and plasma samples, and process a total of 96 standards and samples by manual LLE was three-times longer than the time required for 96-well SPE or 96-well LLE (4 h, 50 min vs. 1 h, 43 min). Even more importantly, the time the bioanalyst physically spent on the 96-well LLE or 96-well SPE procedure was only a small fraction of the time spent on the manual LLE procedure (<10 min vs. 4 h, 10 min). It should be noted that the 96-well SPE procedure incorporated the two steps of evaporation of the eluates to dryness and subsequent reconstitution of the dried extract. The total time required for the 96-well SPE could be reduced by 50% if the eluates were injected directly, eliminating the drying and reconstitution steps, which is achievable when sensitivity is less of an issue.  相似文献   

13.
14.
Tamoxifen (TAM) is a triphenylethylene anti-oestrogen, commonly used in the treatment of breast cancer. Patients receiving tamoxifen therapy may experience both de novo and acquired resistance. As one of the mechanisms for this may be extensive peripheral bio-transformation of tamoxifen, there has been considerable interest in the pharmacokinetics and metabolism of tamoxifen. A reversed-phase high-performance liquid chromatography separation has been developed to determine the levels of tamoxifen and its major metabolites in human plasma. The method is highly sensitive (2 ng/ml) and selective for tamoxifen, cis-tamoxifen (CIS), 4-hydroxytamoxifen (4-OH) and desmethyltamoxifen (DMT). A μBondapak C18 10 μm column (30 cm × 3.9 mm I.D.) was used, with a mobile phase of methanol-1% triethylamine at pH 8 (89:11, v/v). Sample preparation was carried out using a C2 (500 mg sorbent, 3 ml reservoirs) solid phase extraction method, and extraction efficiencies were approximately 60% for TAM and its metabolites. Accuracy and precision, as determined by spiking plasma samples with a mixture of tamoxifen and its metabolites, ranged from 85–110% (± 5–10%) at 1 μg/ml, 101–118% (± 8–20%) at 0.1 μg/ml and 111–168% (± 43–63%) at 0.01 μg/ml. Results from 59 patients show mean values of 54 ng/ml for 4-OH; 190 ng/ml for DMT; 93 ng/ml for TAM and 30 ng/ml for CIS (detected in three patients only). This methodology can be applied routinely to the determination of TAM and its metabolites in plasma from patients undergoing therapy.  相似文献   

15.
A simple high-performance liquid chromatographic procedure was developed for the determination of ranitidine in human plasma. The method entailed direct injection of the plasma samples after deproteination using perchloric acid. The chromatographic separation was accomplished with an isocratic elution using mobile phase consisting of 21 mM disodium hydrogen phosphate–triethylamine-acetonitrile (1000:60:150, v/v), pH 3.5. Analyses were run at a flow-rate of 1.3 ml/min using a μbondapak C18 column and ultraviolet detection at a wavelength of 320 nm. The method was specific and sensitive, with a quantification limit of approximately 20 ng/ml and a detection limit of 5 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery was about 96%, while the within- and between-day coefficient of variation and percent error values of the assay method were all less than 8%. The linearity was assessed in the range of 20–1000 ng/ml plasma, with a correlation coefficient of greater than 0.999. This method has been used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

16.
17.
A method was developed for the determination of gemifloxacin (I) in human plasma using high-performance liquid chromatography–tandem mass spectrometry. Prior to analysis, the protein in plasma samples was precipitated with acetonitrile containing [13C2H3] gemifloxacin (II) to act as an internal standard. The supernatant was injected onto a PLRP-S column without any further clean-up. The mass spectrometer was operated in positive ion mode, employing a heat assisted nebulisation, electrospray interface. Ions were detected in multiple reaction monitoring (MRM) mode. The assay requires 50 μl of plasma and is precise and accurate within the range 10–5000 ng/ml. The average within-run and between-run coefficients of variation were <11% at 10 ng/ml and greater concentrations. The average accuracy of validation standards was generally within ±7% of the nominal concentration. There was no evidence of instability of I in human plasma following three complete freeze–thaw cycles and samples can safely be stored for at least 6 months at −20°C. The method proved very robust and was successfully applied to the analysis of clinical samples from patients dosed with gemifloxacin.  相似文献   

18.
A sensitive method for the enantioselective high-performance liquid chromatography (HPLC) determination of nicardipine in human plasma is described. (+)-Nicardipine, (−)-nicardipine and (+)-barnidipine as an internal standard are detected by an ultraviolet detector at 254 nm. Racemic nicardipine in human plasma was extracted by a rapid and simple procedure based on C18 bonded-phase extraction. The extraction samples were purified and concentrated on a pre-column using a C1 stationary phase and the enantiomers of nicardipine are quantitatively separated by HPLC on a Sumichiral OA-4500 column, containing a chemically modified Pirkle-type stationary phase. Determination of (+)- and (−)-nicardipine was possible in a concentration range of 5–100 ng ml−1 and the limit of detection in plasma was 2.5 ng ml−1. The recoveries of (+)- and (−)-nicardipine added to plasma were 91.4–98.4% and 93.3–96.7%, respectively, with coefficients of variation of less than 9.0 and 9.4% respectively. The method was applied to low level monitoring of (+)- and (−)-nicardipine in plasma from healthy volunteers.  相似文献   

19.
Local transcutaneous delivery of non-steroidal anti-inflammatory drugs avoids gastrointestinal side effects and concentrates drugs in the intended tissues. An extraction and HPLC method was developed for ketoprofen in skin, fascia and muscle. Tissue samples were homogenized in NaHCO3. After methylene chloride removal of lipids, the aqueous layer was acidified with HCl and back extracted into isooctane/isopropanol. Ketoprofen was derivatized with ethylchloroformate/S-(−)-α-phenylethylamine in triethylamine, then detected by HPLC. Ketoprofen recovery was linear (1–33 μg/g) and was detected in these tissues following in vivo cathodic iontophoresis (160 mA*min). This represents the first non-radioactive method for determination of ketoprofen in tissues following transcutaneous iontophoresis.  相似文献   

20.
Recent studies have stressed the need for individual adjustment of 5-fluorouracil (5-FU) dosage. Most of the techniques previously reported are not well adapted to routine application. We describe a sensitive, selective and simple HPLC technique under isocratic conditions for the quantitation of 5-FU and other halogenopyrimidines. The proportion of reagents and internal standard were optimised to allow the use of minitubes, particularly adapted to large series of plasma assays. High extraction yield, 75% for 5-FU and 90% for 5-bromouracil and 5-chlorouracil, was obtained using 1.2 ml isopropanol–ethyl acetate (15:85, v/v) following precipitation of plasma proteins with 300 mg ammonium sulfate. The mobile phase was 0.01 M phosphate buffer (pH 3.0). Uracil and 5-fluorouracil were fully resolved with Spherisorb ODS2 column. The limits of quantitation and detection in human plasma were 6 ng ml−1 and 3 ng ml−1, respectively, for all compounds studied. The total analysis time required for each run was 25 min. Final results could be given within 90 min of blood sampling. At least 50 plasma samples could be analysed per day. This method has been successfully used for monitoring 5-FU-based treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号