首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were performed with cultured primary root tips of sunflower (Helianthus annuus var. Russian Mammoth) to determine: (1) if progression in the mitotic cycle of meristematic cells was nutritionally controllable by carbohydrate starvation and replenishment; (2) where in the mitotic cycle control was effected; and (3) whether nutritional deprivation could be used to detect phenotypically different subpopulations in a complex tissue. Meristematic cells were rendered stationary by carbohydrate starvation, as indicated by the absence of cell division; this condition was reversed by carbohydrate provision. After 72 or 96 hr of starvation most cells stopped in G1 (80–90%) and G2 (10–20%), and a very few (“leaky” cells) continued to enter S. “Leaky” cells represent a small population with an S period of approximately 4.1 hr that either lack a principal control point in G1 or have an unusual metabolism whereby the control point requirements are met and have a carbohydrate dependence for mitosis. Though phenotypically different, no specific functions can be attributed to “leaky” cells at this time.  相似文献   

2.
Immunodetection of protein carbonyl groups demonstrates that growth arrest elicited by carbon or nitrogen starvation causes an increased oxidation of proteins in Saccharomyces cerevisiae. Mutant analysis suggests that the response regulator Pos9p is involved in mitigating self-inflicted oxidative damages in G(0) cells, whereas Yap1p is primarily required in growing cells. The data also suggest that oxidation of target proteins is not a priori an effect of arrest of cell division or nutrient depletion and cannot be explained by the respiratory activity alone nor a high ratio of catabolic/anabolic activity in G(0) cells. Instead, we observed that starvation elicits a transition in the respiratory state (from phosphorylating to nonphosphorylating respiration) and that this transition is associated with a stepwise increase in protein oxidation. During carbon starvation, this transition and increase in oxidation occurs immediately as the carbon source is depleted, growth is arrested, and the respiratory rate falls drastically. In contrast, during nitrogen starvation and excess carbon the respiratory state transition and stepwise increase in protein oxidation are markedly delayed and occur long after the nitrogen source has been depleted and division and growth-arrested. Oxidation in G(0) cells could be enhanced by treating cells with low concentrations of antimycin A and attenuated with myxothiazol, indicating that protein oxidation is intimately linked to reactive oxygen species generated by semiquinones of the Q-cycle. Thus, the work presented suggests that the degree of coupling in the mitochondrial respiratory apparatus rather then the overall rate of respiration affects the degree of protein oxidation in nondividing yeast cells.  相似文献   

3.
The rapamycin-sensitive (TOR) signalling pathway in Saccharomyces cerevisiae controls growth and cell proliferation in response to nutrient availability. Rapamycin treatment causes cells to arrest growth in G1 phase. The mechanism by which the inhibition of the TOR pathway regulates cell cycle progression is not completely understood. Here we show that rapamycin causes G1 arrest by a dual mechanism that comprises downregulation of the G1-cyclins Cln1-3 and upregulation of the Cdk inhibitor protein Sic1. The increase of Sic1 level is mostly independent of the downregulation of the G1 cyclins, being unaffected by ectopic CLN2 expression, but requires Sic1 phosphorylation of Thr173, because it is lost in cells expressing Sic1(T173A). Rapamycin-mediated Sic1 upregulation involves nuclear accumulation of a more stable, non-ubiquitinated protein. Either SIC1 deletion or CLN3 overexpression results in non-cell-cycle-specific arrest upon rapamycin treatment and makes cells sensitive to a sublethal dose of rapamycin and to nutrient starvation. In conclusion, our data indicate that Sic1 is involved in rapamycin-induced G1 arrest and that deregulated entrance into S phase severely decreases the ability of a cell to cope with starvation conditions induced by nutrient depletion or which are mimicked by rapamycin treatment.  相似文献   

4.
Batch- and continuous-cultured cell suspensions of the anaerobic ruminal bacteriumMegasphaera elsdenii strain T-81 were subjected to total nutrient starvation, during which time changes in cell viability, cell composition, and endogenous fermentation acids were monitored. The populations exhibited poor survival capabilities with a 50% survival time of 9–13 h. The primary substrates used for endogenous metabolism appeared to be cellular RNA, carbohydrate, and possibly protein. The types and amounts of major fermentation acids (acetic, butyric, caproic) released from starving cells varied depending upon initial growth conditions and starvation time. The data suggest that growth conditions affect cell composition and have important roles in survival ofM. elsdenii.  相似文献   

5.
Fluconazole inhibition ofSaccharomyces cerevisiae S288c growth was evaluated in media containing ammonia,l-proline orl-leucine as a nitrogen source. Growth inhibition by fluconazole was maximum whenl-proline was used as a nitrogen source, while rhodamine 6G accumulation and fluconazole resistance were the highest when ammonia was the sole nitrogen source.  相似文献   

6.
7.
L. Baud 《BioControl》1968,13(3):229-231
Summary The infection of a lepidopteran with small quantities ofBacillus thuringiensis Berl. (oligo-infection) slows down the lipid storage but does not affect water and nitrogen contents. The similary of action of this treatment with that of total starvation is less striking than the comparison of glycogen contents.   相似文献   

8.
Summary The kinetics of Cu uptake in nutritionally starved cells of the diazotrophic cyanobacteriumNostoc calcicola Bréb. have been compared with those in cells recovering from starvation. Unstarved cyanobacterial cells assimilated 97.0 nmol Cu mg–1 protein within 1 h when incubated in medium containing 40 M Cu. Uptake was markedly inhibited in carbon-starved cells and, to a lesser extent, in cells starved of nitrogen or sulphur. The intracellular concentrations of protein and photopigments were markedly lower in cells starved of carbon, nitrogen, sulphur or phosphorus, whilst that of carbohydrate was lower in cells starved of carbon, sulphur or phosphorus, but almost doubled in cells starved of nitrogen. The ability to assimilate Cu was partially restored in cells after 72 h of recovery from phosphorus or sulphur deprivation, but showed little improvement during recovery from carbon or nitrogen starvation. A possible role of phosphorus in regulating Cu transport and accumulation is discussed.  相似文献   

9.
The gene ptc4+ encodes one of four type 2C protein phosphatases (PP2C) in the fission yeast Schizosaccharomyces pombe. Deletion of ptc4+ is not lethal; however, Deltaptc4 cells grow slowly in defined minimal medium and undergo premature growth arrest in response to nitrogen starvation. Interestingly, Deltaptc4 cells are unable to fuse vacuoles in response to hypotonic stress or nutrient starvation. Conversely, Ptc4 overexpression appears to induce vacuole fusion. These findings reveal a hitherto unrecognized function of type 2C protein phosphatases: regulation of vacuole fusion. Ptc4 localizes in vacuole membranes, which suggests that Ptc4 regulates vacuole fusion by dephosphorylation of one or more proteins in the vacuole membrane. Vacuole function is required for the process of autophagy that is induced by nutrient starvation; thus, the vacuole defect of Deltaptc4 cells might explain why these cells undergo premature growth arrest in response to nitrogen starvation.  相似文献   

10.
Yarrowia lipolytica is a dimorphic yeast usually isolated from dairy products. Here we described methods for inducing in a homogeneous way a true yeast-hypha transition in liquid medium. As a first step, the cells must be synchronized in the G1 phase of the cell cycle by nitrogen starvation. Using either N-acetylglucosamine (GlcNAc) or serum as the only carbon sources, more than 90% of the cells form hypha after 4–6 h of incubation. Bovine albumin is also able to induce the yeast-hypha transition, although to a lesser extent. The addition of glucose to cultures growing with GlcNAc arrest the morphogenetic switch but not when added to cultures growing in the presence of serum. Serum also induces invasive growth in solid medium. Neither pH, nitrogen starvation, nor temperature play a relevant role in the morphogenetic switch. Our results suggest that, as occurs in Candida albicans, at least two morphogenetic signal pathways exist in Y. lipolytica. Received: 20 March 2001 / Accepted: 17 April 2001  相似文献   

11.
BackgroundPresence of unperfused regions containing cells under hypoxia and nutrient starvation; contributes to radioresistance in solid human tumors. We have previously reported that cultured cells; under nutrient starvation show resistance to ionizing radiation compare with cells under normal; condition, and that nutrient starvation increases ATM activity, which causes cellular resistance to; ionizing radiation (Murata et al., BBRC2018). For further investigation of molecular mechanisms; underlying radioresistance of cells under nutrient starvation, effects of nutrient starvation on activity; of DNA-PKcs have been investigated because both DNA-PKcs and ATM belong to the PIKK family; and are required for DNA DSBs repair. In addition to DNA-PKcs, effects of nutrient starvation on; activities of FoxO3a and its regulators Akt, MST1 and AMPK have been investigated because FoxO3a; mediates cellular responses to stress and is activated under nutrient starvation.MethodsA human glioblastoma cell line, T98G was used to examine the effects of nutrient starvation on activities and expression of DNA-PKcs, Akt, MST1, FoxO3a, NDR1, and AMPK. To elucidate; signal transduction pathways for FoxO3a activation under nutrient starvation, we examined effects of; specific inhibitors or siRNA for DNA-PKcs or Akt on activities and expression of MST1, FoxO3, NDR1, andAMPK.ResultsUnder nutrient starvation, phosphorylations of DNA-PKcs at Ser2056, Akt at Ser473, MST at Thr183, FoxO3a at Ser413, NDR1 at Ser281 and Thr282, and AMPK at Thr172 were increased, which suggests their activation. Nutrient starvation did not affect expression of DNA-PKcs, Akt, MST1, or NDR1, with decreased expression of FoxO3a and increased expression of AMPK. Inhibition; of DNA-PK suppressed phosphorylation of Akt under nutrient starvation. Inhibition of DNA-PK or; Akt suppressed phosphorylations of MST1, FoxO3a, and NDR1 under nutrient starvation, which; suggests DNA-PKcs and Akt activate MST1, FoxO3a, and NDR1. Inhibition of DNA-PK did not; suppress phosphorylation ofAMPK under nutrient starvation.ConclusionOur data suggest that DN-PKcs is activated under nutrient starvation and activates AktMST1, FoxO3a, and NDR1.  相似文献   

12.
《Autophagy》2013,9(10):1702-1711
In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G1/G0 in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G2/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G2/M transition and arrest in G1/G0, autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G1/G0 quiescent state.  相似文献   

13.
The arginase and the ornithine transaminase of baker's yeast are induced byl-arginine. Both enzymes have been shown to be repressed by nitrogen compounds. This is evidenced primarily by the decrease in specific enzyme activities caused by the addition of readily assimilable nitrogen compounds to a yeast culture with arginine, secondly by the derepression of both enzymes during nitrogen starvation of the yeast grown in various arginine-free media. This derepression equals both in rate and in amount the enzyme synthesis during the adaptation of the yeast to a medium withl-arginine as the sole nitrogen source. It is inhibited by various assimilable and non-assimilable amino acids. The derepression is the result of the nitrogen deficiency itself, since during the starvation of the yeast for sulphate, phosphate or magnesium, neither of the two enzymes is derepressed, and since it is independent of the nature of the carbon source in the nitrogen starvation medium, provided the latter is immediately assimilable.The enzymes are not subject to catabolite repression by glucose metabolites.It is concluded that the synthesis of arginase and ornithine transaminase in yeast is regulated by induction and repression. Arginine induces the enzymes; they are repressed by nitrogen compounds, probably in cooperation with one or more vitamins.Thanks are due to Professor E. G. Mulder for his frequent encouragement, to the Heineken's Brouwerij, Rotterdam and to the Landbouwhogeschoolfonds for research grants, and to Miss H. P. M. Klinkers, to Mr. P. J. Buysman and to Mr. G. J. K. Pesch for their skilful technical assistance.  相似文献   

14.
Experiments were performed with cultured excised primary root tips of Vicia faba ‘Longpod’ to determine: (1) the proportion of meristematic cells arrested in Gl and in G2 during carbohydrate starvation, and to determine if the proportion is fixed or can be varied experimentally; (2) the effect of increased starvation on the ability of arrested cells in Gl and G2 to initiate DNA synthesis and mitosis, respectively, when exogenous sucrose was supplied; and (3) whether puromycin, cycloheximide, or actinomycin D prevented the initiation of DNA synthesis and the onset of mitosis. Microspectrophotometry of nuclear DNA and autoradiographic measurements of incorporated 3H-thymidine showed that 72 hr of starvation immediately after excision produced tissue with more than 70 % of the cells arrested in G2 and less than 30 % in Gl. If cultured for three days and then starved for 72 hr, the tissue had nearly equal numbers of cells arrested in Gl and G2. As the duration of starvation increased, the time required to initiate DNA synthesis and to divide when carbohydrate was replenished also increased. Inhibition of protein synthesis by puromycin and cycloheximide prevented the initiation of DNA synthesis and mitosis, but actinomycin D, an inhibitor of RNA synthesis, did not prevent division of cells from G2 nor DNA synthesis by cells from Gl. The experiments demonstrated that the mitotic cycle of Vicia has two major controls, one in Gl and another in G2, and that other factors determine how many cells are affected by either of these cycle controls.  相似文献   

15.
《Autophagy》2013,9(5):731-738
Autophagy is essential for prolonging yeast survival during nutrient deprivation; however, this report shows that some autophagy proteins may also be accelerating population death in those conditions. While leucine starvation caused YCA1-mediated apoptosis characterized by increased annexin V staining, nitrogen deprivation triggered necrotic death characterized by increased propidium iodide uptake. Although a Δatg8 strain died faster than its parental strain during nitrogen starvation, this mutant died slower than its parent during leucine starvation. Conversely, a Δatg11 strain died slower than its parent during nitrogen starvation, but faster during leucine starvation. Curiously, although GFP-Atg8 complemented the Δatg8 mutation, this protein made ATG8 cells more sensitive to nitrogen starvation, and less sensitive to leucine starvation. These results were difficult to explain if autophagy only extended life but could be an indication that a second form of autophagy could concurrently facilitate either apoptotic or necrotic cell death.  相似文献   

16.
K Kominami  H Seth-Smith    T Toda 《The EMBO journal》1998,17(18):5388-5399
Many eukaryotic cells arrest the cell cycle at G1 phase upon nutrient deprivation. In fission yeast, during nitrogen starvation, cells divide twice and arrest at G1. We have isolated a novel type of sterile mutant, which undergoes one additional S phase upon starvation and, as a result, arrests at G2. Three loci (apc10, ste9/srw1 and rum1) were identified. The apc10 mutants, previously unidentified, show, in addition to sterility, temperature-sensitive growth with defects in chromosome segregation. apc10(+) is essential for viability, encodes a conserved protein (a homologue of budding yeast Apc10/Doc1) and is required for ubiquitination and degradation of mitotic B-type cyclins. Apc10 does not co-sediment with the 20S APC-cyclosome, a ubiquitin ligase for B-type cyclins, and in the apc10 mutant the 20S complex is intact, suggesting that it is a novel regulator for this complex. A subpopulation of Apc10 does co-immunoprecipitate with the anaphase-promoting complex (APC). A second gene, ste9(+)/srw1(+), encodes a member of the fizzy-related family, also regulators of the APC. Finally, Rum1 is a cyclin-dependent kinase (CDK) inhibitor which exists only in G1. The results suggest that dual downregulation of CDK, one via the APC and the other via the CDK inhibitor, is a universal mechanism that is used to arrest cell cycle progression at G1.  相似文献   

17.
Although sucrose availability is crucial for commitment to plant cell division during G1 phase by controlling the expression of D-type cyclins, it has remained unclear how these factors mediate entry into the cell cycle. Here we show that Arabidopsis RETINOBLASTOMA-RELATED PROTEIN 1 (AtRBR1) is involved in G1-phase cell cycle arrest caused by sucrose starvation. We generated estrogen-inducible AtRBR1 RNA interference (RNAi) Arabidopsis suspension MM2d cells, and found that downregulation of AtRBR1 leads to a higher frequency of arrest in G2 phase, instead of G1-phase arrest in the uninduced control, after sucrose starvation. Synchronization experiments confirmed that downregulation of AtRBR1 leads to a prolonged G2 phase and delayed activation of G2/M marker genes. Downregulation of AtRBR1 also stimulated the activation of E2F-regulated genes when these genes were repressed in the uninduced cells under the limited sucrose conditions. We conclude that AtRBR1 is a key effector for the ability of sucrose to modulate progression from G1 phase.  相似文献   

18.
Summary Low molecular weight nitrogenous impurity compounds as well as raffinose are negative quality factors that interfere with efficient processing of sugarbeet (Beta vulgaris L.) for sucrose. In order to identify nutrient media for cell selection of biochemical mutants or transgenics that might have reduced levels of these processing impurities, the ability of 10 endogenous compounds to serve as sole nitrogen or carbon source for suspension plating and subculture callus growth was evaluated. The most productive concentrations of nitrate, ammonium, l-glutamine, l-glutamate, urea, and l-proline as sole nitrogen sources supported plating callus growth at 106, 159, 233, 167, 80, and 52%, respectively, as well as the historical 60 mM mix of nitrate and ammonium in Murashige-Skoog medium. Glycine betaine and choline did not support growth. d(+) Raffinose and d(+) galactose supported plating callus growth only 67 and 25%, respectively, as well as sucrose as sole carbohydrate source. No callus growth occurred on glutamine, glutamate, or glycine betaine as the sole carbon or carbon plus nitrogen source. Platings on either nitrate or ammonium as sole nitrogen source did not differ in sensitivity to the nitrate uptake inhibitor phenylglyoxal, suggesting that phenylglyoxal lacks the specificity for use in selection for mutants of nitrate uptake. The ability of raffinose to be used as the carbon source, and glutamine or glutamate as the nitrogen source, may preclude their use for selection of genetic variants accumulating less of these processing impurities. However, mutants or transgenics able to utilize either glutamine, glutamate, or glycine betaine might be selectable on media containing any one of these as carbon, nitrogen, or carbon plus nitrogen source, respectively, that is incapable of supporting wild-type cell growth.  相似文献   

19.
Three marine phytoplankters (Isochrysis galbana, Chaetoceros calcitrans andThalassiosira pseudonana), commonly used in the culture of bivalve larvae, were grown in batch or semi-continuous cultures. Changes in protein, carbohydrate, lipid and some fatty acids were measured as growth became limited by nitrogen, silicon, phosphorus or light. Under N starvation (2 d) the % lipid remained relatively constant, while% carbohydrate increased and% protein decreased in all 3 species compared to cells growing under no nutrient limitation. Under Si starvation (6 h) there was no change in lipid, protein or carbohydrates. The amount of two fatty acids, 20 : 53 and 22 : 63 remained relatively constant under N, P and Si starvation, exept for a sharp drop in the cells of P-starvedT. pseudonana. However, there were pronounced species differences withI. galbana containing significantly less 20 : 5 3 thanC. calcitrans orT. pseudonana. Under light limitation the amount of lipid per cell showed no consistent trend over a range of irradiances for all 3 species. The amount of N per cell (an index of protein content) as a function of irradiance, was relatively constant forI. galbana andT. pseudonana, while the amount of N per cell was lower under low irradiances forC. calcitrans. These examples of changes in protein, carbohydrate, lipid and certain fatty acids under nutrient (N, Si or P) or light limitation, emphasize the importance of knowing the phase (e.g. logarithmic vs stationary) of the growth curve in batch cultures, since the nutritional value of the phytoplankters could change as cultures become dense and growth is terminated due to nutrient or light limitation.Presented at the XIIIth International Seaweed Symposium, University of British Columbia, Vancouver, Canada, August 1989.  相似文献   

20.
Yeasts belonging to 27 species ofSaccharomyces were tested for their ability to used-amino acids,l-lysine and various amines and amides as nitrogen source. Most yeasts capable of growing onl-lysine or amines could utilized-amino acids.Saccharomyces (sensu strictu) have a very limited ability to grow on the organic nitrogen compounds tested. However, there is no obvious relationship between the utilization of these compounds and the proposed divisions of the genusSaccharomyces.Issued as N.R.C. No. 9845.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号