首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The current study presents that ascofuranone isolated from a phytopathogenic fungus, Ascochyta viciae, has antitumor activity against various transplantable tumors and a considerable hypolipidemic activity. AMP-activated protein kinase (AMPK) plays a critical role in cellular glucose and lipid homeostasis. We found that ascofuranone improves ER stress-induced insulin resistance by activating AMPK through the LKB1 pathway. In L6 myotube cells, ascofuranone treatment increased the phosphorylation of the Thr-172 residue of the AMPKα subunit and the Ser-79 subunit of acetyl-CoA carboxylase (ACC) and cellular glucose uptake. Ascofuranone-induced phosphorylation of AMPK and ACC was not increased in A549 cells lacking LKB1. Interestingly, ascofuranone treatment also improved insulin signaling impaired by ER stress in L6 myotube cells. These effects were all reversed by pretreatment with Compound C, an AMPK inhibitor or with adenoviral-mediated dominant-negative AMPKα2. Taken together, these results indicated that ascofuranone-mediated enhancement of glucose uptake and reduction of impaired insulin sensitivity in L6 cells is predominantly accomplished by activating AMPK, thereby mediating beneficial effects in type 2 diabetes and insulin resistance.  相似文献   

3.
Thephosphorylation states of three proteins implicated in the action ofinsulin on translation were investigated, i.e., 70-kDa ribosomalprotein S6 kinase (p70S6k),eukaryotic initiation factor (eIF) 4E, and the eIF-4E binding protein4E-BP1. Addition of insulin caused a stimulation of protein synthesisin L6 myoblasts in culture, an effect that was blocked by inhibitors ofphosphatidylinositide-3-OH kinase (wortmannin), p70S6k (rapamycin), andmitogen-activated protein kinase (MAP kinase) kinase (PD-98059). Thestimulation of protein synthesis was accompanied by increasedphosphorylation of p70S6k, aneffect that was blocked by rapamycin and wortmannin but not PD-98059.Insulin caused dephosphorylation of eIF-4E, an effect that appeared tobe mediated by the p70S6kpathway. Insulin also stimulated phosphorylation of 4E-BP1 as well asdissociation of the 4E-BP1 · eIF-4E complex. Bothrapamycin and wortmannin completely blocked the insulin-induced changes in 4E-BP1 phosphorylation and association of 4E-BP1 and eIF-4E; PD-98059 had no effect on either parameter. Finally, insulin stimulated formation of the active eIF-4G · eIF-4E complex, aneffect that was not prevented by any of the inhibitors. Overall, theresults suggest that insulin stimulates protein synthesis in L6myoblasts in part through utilization of both thep70S6k and MAP kinase signaltransduction pathways.

  相似文献   

4.
We investigated the regulatory mechanism of interleukin-6 (IL-6) synthesis induced by interleukin-1 (IL-1) in osteoblast-like MC3T3-E1 cells. IL-1 stimulated the secretion of IL-6 in a dose-dependent manner in the range between 0.1 and 100 ng/ml. Staurosporine and calphostin C, inhibitors of protein kinase C (PKC), significantly enhanced the IL-1-induced secretion of IL-6. The stimulative effect of IL-1 was markedly amplified in PKC down-regulated MC3T3-E1 cells. IL-1 produced diacylglycerol in MC3T3-E1 cells. IL-1 had little effect on the formation of inositol phosphates and choline. On the contrary, IL-1 significantly stimulated the formation of phosphocholine dose-dependently. D-609, an inhibitor of phosphatidylcholine-specific phospholipase C, suppressed the IL-1-induced diacylglycerol production. The IL-1-induced IL-6 secretion was significantly enhanced by D-609. These results indicate that IL-1 activates PKC via phosphatidylcholine-specific phospholipase C in osteoblast-like cells, and the PKC activation then limits IL-6 synthesis induced by IL-1 itself. J. Cell. Biochem. 67:103–111, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Transient receptor potential canonical‐6 (TRPC6) ion channels, expressed at high levels in podocytes of the filtration barrier, are recently implicated in the pathogenesis of various forms of proteinuric kidney diseases. Indeed, inherited or acquired up‐regulation of TRPC6 activities are suggested to play a role in podocytopathies. Yet, we possess limited information about the regulation of TRPC6 in human podocytes. Therefore, in this study, we aimed at defining how the protein kinase C (PKC) system, one of the key intracellular signalling pathways, regulates TRPC6 function and expression. On human differentiated podocytes, we identified the molecular expressions of both TRPC6 and several PKC isoforms. We also showed that TRPC6 channels are functional since the TRPC6 activator 1‐oleoyl‐2‐acetyl‐sn‐glycerol (OAG) induced Ca2+‐influx to the cells. By assessing the regulatory roles of the PKCs, we found that inhibitors of the endogenous activities of classical and novel PKC isoforms markedly augmented TRPC6 activities. In contrast, activation of the PKC system by phorbol 12‐myristate 13‐acetate (PMA) exerted inhibitory actions on TRPC6 and suppressed its expression. Importantly, PMA treatment markedly down‐regulated the expression levels of PKCα, PKCβ, and PKCη reflecting their activation. Taken together, these results indicate that the PKC system exhibits a ‘tonic’ inhibition on TRPC6 activity in human podocytes suggesting that pathological conditions altering the expression and/or activation patterns of podocyte‐expressed PKCs may influence TRPC6 activity and hence podocyte functions. Therefore, it is proposed that targeted manipulation of certain PKC isoforms might be beneficial in certain proteinuric kidney diseases with altered TRPC6 functions.  相似文献   

6.
The effects of cAMP-dependent protein kinase A and protein kinase C on cell-cell communication have been examined in primary ovarian granulosa cells microinjected with purified components of these two regulatory cascades. These cells possess connexin43 ( 1)-type gap junctions, and are well-coupled electrotonically and as judged by the cell-to-cell transfer of fluorescent dye. Within 2–3 min after injection of the protein kinase A inhibitor (PKI) communication was sharply reduced or ceased, but resumed in about 3 min with the injection of the protein kinase A catalytic subunit. A similar resumption also occurred in PKI-injected cells after exposure to follicle stimulating hormone. Microinjection of the protein kinase C inhibitor protein caused a transient cessation of communication that spontaneously returned within 15–20 min. Treatment of cells with activators of protein kinase C, TPA or OAG for 60 min caused a significant reduction in communication that could be restored within 2–5 min by the subsequent injection of either the protein kinase C inhibitor or the protein kinase A catalytic subunit. With a longer exposure to either protein kinase C activator communication could not be restored and this appeared to be related to the absence of aggregates of connexin43 in membrane as detected immunologically. In cells injected with alkaline phosphatase communication stopped but returned either spontaneously within 20 min or within 2–3 min of injecting the cell with either the protein kinase A catalytic subunit or with protein kinase C. When untreated cells were injected with protein kinase C communication diminished or ceased within 5 min. Collectively these results demonstrate that cell-cell communication is regulated by both protein kinase A and C, but in a complex interrelated manner, quite likely by multiple phosphorylation of proteins within or regulating connexin-43 containing gap junctions.Abbreviations C catalytic subunit of protein kinase A - CKI protein kinase C inhibitor protein - Cx connexin protein - dbcAMP N6,2-O-dibutyryladenosine 3:5-cyclic monophosphate - OAG 1-oleoyl-2-acetyl-sn-glycerol - protein kinase A cAMP-dependent protein kinase - protein kinase C Ca2+-sensitive phospholipid-dependent protein kinase - PKI protein kinase A inhibitor protein - R regulatory subunit of protein kinase A - TRA 12-O-tetradecanoylphorbol-13-acetate - 8Br-cAMP 8-bromoadenosine 3:5 cyclic monophosphate  相似文献   

7.
Phorbol ester treatment enhanced the catalytic activity of type II adenylyl cyclase overexpressed in insect cells. In cells coexpressing type II adenylyl cyclase and protein kinase C-α, type II adenylyl cyclase catalytic activity was higher even in the absence of phorbol ester treatment; phorbol ester treatment further and markedly enhanced type II adenylyl cyclase catalytic activity. However, this enhancement, either by phorbol ester treatment or by coexpression of protein kinase C-α, was lost following membrane solubilization with detergents. This attenuation was unaffected by phosphatase inhibitor or salts. In contrast, membrane solubilization did not affect forskolin-stimulated type II adenylyl cyclase catalytic activity. Purified type II adenylyl cyclase was stimulated by forskolin and Gsα, but not by protein kinase C-α. Therefore, a specific mammalian protein kinase C isoenzyme can activate type II adenylyl cyclase, but the mechanism clearly differs from that underlying either Gsα- or forskolin-mediated stimulation. J. Cell. Biochem. 64:492–498. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Background information. At fertilization in mammalian eggs, the sperm induces a series of Ca2+ oscillations via the production of inositol 1,4,5‐trisphosphate. Increased inositol 1,4,5‐trisphosphate production appears to be triggered by a sperm‐derived PLCζ (phospholipase C‐ζ) that enters the egg after gamete fusion. The specific phosphatidylinositol 4,5‐bisphosphate hydrolytic activity of PLCζ implies that DAG (diacylglycerol) production, and hence PKC (protein kinase C) stimulation, also occurs during mammalian egg fertilization. Fertilization‐mediated increase in PKC activity has been demonstrated; however, its precise role is unclear. Results. We investigated PLCζ‐ and fertilization‐mediated generation of DAG in mouse eggs by monitoring plasma‐membrane translocation of a fluorescent DAG‐specific reporter. Consistent plasma‐membrane DAG formation at fertilization, or after injection of physiological concentrations of PLCζ, was barely detectable. However, when PLCζ is overexpressed in eggs, significant plasma‐membrane DAG production occurs in concert with a series of unexpected secondary high‐frequency Ca2+ oscillations. We show that these secondary Ca2+ oscillations can be mimicked in a variety of situations by the stimulation of PKC and that they can be prevented by PKC inhibition. The way PKC leads to secondary Ca2+ oscillations appears to involve Ca2+ influx and the loading of thapsigargin‐sensitive Ca2+ stores. Conclusions. Our results suggest that overproduction of DAG in PLCζ‐injected eggs can lead to PKC‐mediated Ca2+ influx and subsequent overloading of Ca2+ stores. These results suggest that DAG generation in the plasma membrane of fertilizing mouse eggs is minimized since it can perturb egg Ca2+ homoeostasis via excessive Ca2+ influx.  相似文献   

9.
Wood CD  Kelly AP  Matthews SA  Cantrell DA 《FEBS letters》2007,581(18):3494-3498
Phosphoinoisitide dependent kinase l (PDK1) is proposed to phosphorylate a key threonine residue within the catalytic domain of the protein kinase C (PKC) superfamily that controls the stability and catalytic competence of these kinases. Hence, in PDK1-null embryonic stem cells intracellular levels of PKCalpha, PKCbeta1, PKCgamma, and PKCepsilon are strikingly reduced. Although PDK1-null cells have reduced endogenous PKC levels they are not completely devoid of PKCs and the integrity of downstream PKC effector pathways in the absence of PDK1 has not been determined. In the present report, the PDK1 requirement for controlling the phosphorylation and activity of a well characterised substrate for PKCs, the serine kinase protein kinase D, has been examined. The data show that in embryonic stem cells and thymocytes loss of PDK1 does not prevent PKC-mediated phosphorylation and activation of protein kinase D. These results reveal that loss of PDK1 does not functionally inactivate all PKC-mediated signal transduction.  相似文献   

10.
11.
Exposure of fibroblasts derived from keloid tissues, desmoid and dermal tissue from individuals with Gardner's syndrome (GS) to dexamethasone resulted in the suppression of protein kinase C (PKC) activity and [3H]thymidine incorporation into DNA, and a 20-fold induction of glutamine synthetase activity. Treatment of GS and keloid fibroblasts with 0.1 microM dexamethasone for 36 h increased glucocorticoid receptor (GR) synthesis, as determined by [35S]methionine labeling and immunoprecipitation with a monoclonal antibody to the human GR. The suppression of PKC activity by dexamethasone was shown to result from a loss of protein mass as determined by immunoblotting using an antibody to PKC type III. In contrast to these results, exposure of fibroblasts isolated from normal tissues to dexamethasone did not result in the suppression PKC and [3H]thymidine incorporation, there was only a sixfold induction of glutamine synthetase, and a decrease of GR synthesis. As no primary receptor binding defect could be detected, the altered response of tumor cells to steroid-occupied receptor indicates a partial post-receptor binding defect in GS and keloid cells.  相似文献   

12.
Quiescent 3T3 cells grown in media containing 4% foetal calf serum showed different responses to insulin and to serum repletion (to 12%). Insulin stimulated protein synthesis within 1 h and this early response was insensitive to actinomycin D. The later insulin response showed progressive sensitivity to actinomycin D. The serum response was slower, not occurring until 1 h, and was inhibited by actinomycin D. Depletion of cell protein kinase C by pre-treatment with phorbol ester caused a total block of the immediate response to insulin but had little effect on the response to serum or the later response to insulin. Acute phorbol ester treatment stimulated protein synthesis.  相似文献   

13.
目的探讨蛋白激酶C(Protein Kinase C,PKC)在棕榈酸(Palmitic Acid,PA)诱导的骨骼肌细胞胰岛素抵抗(Isulin Resistance,IR)中的作用。方法免疫荧光鉴定原代大鼠骨骼肌细胞,氧化酶-过氧化物酶偶联法(GOD-POD法)检测培养液中葡萄糖浓度。设立对照组、棕榈酸组(PA组)、罗格列酮组(Rosiglitazone,Ros组),每组一分为二,分别加PKC抑制剂白屈莱红碱(Chelerythrine Chloride,CC)与正常培养液作用1h,Western Blot检测PKB及P-Ser473 PKB表达水平。结果 90%以上的细胞-αsarcometric actin免疫荧光染色呈阳性反应,表明培养的细胞为骨骼肌细胞;0.6mmol/L的PA作用24h可诱导骨骼肌细胞产生胰岛素抵抗;PA组与对照组相比P-Ser473 PKB水平显著降低,与本组未加CC相比显著升高。同时,罗格列酮组及本组加CC中P-Ser473PKB水平均高于PA组。结论在PA诱导的骨骼肌细胞IR方面PKC起重要作用,罗格列酮与PKC抑制剂CC均能改善PA引起的IR。  相似文献   

14.
Turban S  Hajduch E 《FEBS letters》2011,(2):1021-274
The role of protein kinase C (PKCs) isoforms in the regulation of glucose metabolism by insulin is complex, partly due to the large PKC family consisting of three sub-groups: conventional, novel and atypical. Activation of some conventional and novel PKCs in response to increased levels of diacylglycerol (DAG) have been shown to counteract insulin signalling. However, roles of atypical PKCs (aPKCs) remain poorly understood. aPKCs act as molecular switches by promoting or suppressing signalling pathways, in response to insulin or ceramides respectively. Understanding how DAG- and ceramide-activated PKCs impair insulin signalling would help to develop treatments to fight insulin resistance.  相似文献   

15.
Abstract The change from pentose phosphate pathway to glycolysis plays a significant role in the physiology of Aspergillus niger during the induction of citric acid accumulation. Evidence is shown for the importance of 6-phophofructo-1-kinase in this process since it is activated by phosphorylation. By incubating a purified active form of enzyme together with commercially available alkaline phosphatase, 6-phosphofructo-1-kinase activity was lost after a certain time suggesting that the enzyme was dephosphorylated. Inactive 6-phosphofructo-1-kinase could be isolated from the cells in the early stage of growth in a high citric acid yielding medium. The enzyme was 'in vitro' activated by isolated protein kinase in the presence of cAMP, ATP and Mg2+ ions. Additional evidence for covalent phosphorylation of inactive 6-phosphofructo-1-kinase was obtained by incubating both enzymes together with labelled [ γ −32P]ATP. The activating enzyme was partially purified from A. niger mycelium.  相似文献   

16.
Insulin at a concentration close to the physiological range (100 mu-units/ml) stimulated protein synthesis in L6 myoblasts by 17%. Pre-treatment with the phospholipase A2 inhibitors mepacrine or dexamethasone prevented this stimulation and decreased the release of prostaglandin F2 alpha, implicating the action of phospholipase A2 and the subsequent metabolism of arachidonic acid to prostaglandins in the stimulation of protein synthesis by physiological doses of insulin. Higher concentrations of insulin (500-1000 mu-units/ml) stimulated protein synthesis in the presence of mepacrine or dexamethasone, suggesting that an alternative pathway may become important in insulin action when phospholipase A2 is inhibited.  相似文献   

17.
A calcium-sensitive, phospholipid-dependent protein kinase (protein kinase C) and its three isozymes were purified from rat heart cytosolic fractions utilizing a rapid purification method. The purified protein kinase C enzyme showed a single polypeptide band of 80 KDa on SDS-polyacrylamide gel electrophoresis, and was totally dependent on the presence of Ca2+ and phospholipid for activity. Diacylglycerol was also found to stimulate enzymatic activity. Autophosphorylation of the purified PKC showed an 80 KDa polypeptide. The identity of the purified protein was also verified with monoclonal antibodies specific for PKC. Further fractionation of the purified PKC on a hydroxylapatite column yielded three distinct peaks of enzyme activity, corresponding to type I, II and III based on similar chromatographic behaviour as the rat brain enzyme. All three forms were entirely Ca2– and phosphatidylserine dependent. Type II was found to be the most abundant. Type I was found to be highly unstable. PKC activity studies demonstrate that types II and III isozymic forms are different with respect to their sensitivity to Ca2+.Abbreviations PKC Protein Kinase C - SDS Sodium Dodecyl Sulfate - PAGE Polyacrylamide Gel Electrophoresis - Km Michaelis constant - NBT Nitro-Blue Tetrazolium - BCIP 5-Bromo-4-Chloro-3-Indolyl Phosphate  相似文献   

18.
Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK.  相似文献   

19.
A gelatin-binding glycoprotein from L6 rat myoblasts, designated gp46, was shown to be phosphorylated in vivo. This phosphorylation was increased slightly (18%) by phorbol ester treatment of L6 suggesting protein kinase C involvement. Purified gp46 could be phosphorylated in vitro with protein kinase C, but not by the catalytic subunit of cAMP-dependent protein kinase. Comparison of the phosphotryptic peptide maps of in vitro and in vivo labeled gp46 suggested that in vivo phosphorylation of gp46 may be mediated by protein kinase C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号