首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present report, we studied the effect of the diglyceride (DG) lipase inhibitor, RHC 80267 on basal and thyrotropin (TSH) - stimulated prostaglandin (PG) release from rat thyroid lobes Further, we tested the effect of RHC 80267 on phosphatidylinositol phospholipase C (PIPLC), DG lipase, and arachidonate cyclo-oxygenase acdtivities in rat thyroid cytosol, plasma membrane, and whole homogenate preparations, r espectively. Whereas RHC 80267 inhibited DG lipase activity in a dose - re;ated manner from 0.5 – 10 μM (17 – 80% inhibition), it failed either PIPLC or arachidonate cyclo-oxygenase activities by more than 9% when tested at 5 and 10 μM (n = 3). RHC 80267 reduced TSH-stimulated 6-keto-PGF and PGE relase by 100 ± 14% and 57 ± 12%, respectively 9x + S.E.; p < 0.01 for both; n = 10 – 12; the diglyceride lipase inhibitor did not reduce basal release of either PG. These data provide additional evidence which implicate a PIPLC - DG lipase pathway in TSH-stimulated PG synthesis in thyroid.  相似文献   

2.
RHC 80267, on inhibitor of diacylglycerol lipase, was used to investigate the role of diacylglycerol in acid secretion by isolated rat gastric parietal cells. Unexpectedly, RHC 80267 stimulated the production of inositol phosphates in [3H]inositol-prelabeled cells and increased levels of 32P-labeled phosphatidic acid to the same degree as did carbachol. RHC 80267 increased diacylglycerol to a greater extent than did carbachol, and additionally decreased levels of [3H]arachidonic acid. This suggests that RHC 80267 stimulated phospholipase C and inhibited diacylglycerol lipase in parietal cells. RHC inhibited [14C]aminopyrine uptake, a measure of acid secretion, stimulated by carbachol or by simultaneous addition of carbachol and dibutyryl-cAMP. These data support the model that the diacylglycerol/protein kinase C branch of the phosphoinositide system is inhibitory to acid secretion.  相似文献   

3.
Rates of accretion of RNA and protein and rates of protein synthesis were measured in sub-confluent cultures of L6 myoblasts. Insulin (100 microU/ml) stimulated protein synthesis by 15% within 30 min and by 40% at two and six hours. By six hours insulin also increased the accretion of RNA (+15%). The cyclo-oxygenase inhibitor indomethacin did not reduce the basal rate of RNA or protein accretion in L6 cells but reduced the rate of protein synthesis by 16%. When added together with insulin, indomethacin inhibited the hormonally-stimulated rate of protein synthesis and also significantly reduced the accretion of RNA. Indomethacin still reduced the effects of insulin on protein synthesis when added to the cells two hours after the hormone. Synthesis of RNA measured by the incorporation of [3H]-uridine was also stimulated by insulin but was inhibited by indomethacin only when the drug was present throughout the incubation. Inhibition of protein synthesis by cyclo-oxygenase inhibitors may be the result of both a direct action on translational efficiency and an effect on RNA synthesis.  相似文献   

4.
Rates of accretion of RNA and protein and rates of protein synthesis were measured in sub-confluent cultures of L6 myoblasts. Insulin (100 μU/ml) stimulated protein synthesis by 15% within 30 min and by 40% at two and six hours. By six hours insulin also increased the accretion of RNA (+ 15%). The cyclo-oxygenase inhibitor indomethacin did not reduce the basal rate of RNA or protein accretion in L6 cells but reduced the rate of protein synthesis by 16%. When added together with insulin, indomethacin inhibited the hormonally-stimulated rate of protein synthesis and also significantly reduced the accretion of RNA. Indomethacin still reduced the effects of insulin on protein synthesis when added by the incorporation of [3H]-uridine was also stimulated by insulin but was inhibited by indomethacin only when the drug was present throughout the incubation. Inhibition of protein synthesis by cyclo-oxygenase inhibitors may be the result of both a direct action on translational efficiency and an effect on RNA synthesis.  相似文献   

5.
6.
R E Muid  B Twomey  M M Dale 《FEBS letters》1988,234(1):235-240
A 'cocktail' consisting of an inhibitor of diacylglycerol kinase (R59022, 10 microM), an inhibitor of diacylglycerol lipase (RHC80267, 10 microM), and an inhibitor of phospholipase A2 (either 100 microM indomethacin, or 100 microM sodium meclofenamate) markedly enhanced superoxide production by human neutrophils stimulated with post-receptor stimuli, fluoride and gamma-hexachlorocyclohexane. On the other hand, the response to the C3b/Fc receptor stimulus, opsonized zymosan, was marginally decreased whilst that to the Fc receptor stimulus, aggregated IgG, was virtually unaffected. Since the inhibitors used are deemed to inhibit the main routes of arachidonate production, these results call into question the role of arachidonate in the transduction of O2- generation by post-receptor stimuli, but support a role for arachidonate in receptor-mediated transduction.  相似文献   

7.
The diacylglycerol lipase inhibitor, RHC 80267, 1,6-di(O-(carbamoyl)cyclohexanone oxime)hexane, was tested for its ability to block the release of arachidonic acid from human platelets. At a concentration (10 microM) reported to completely inhibit diacylglycerol lipase in fractions of broken platelets, RHC 80267 had no effect on diacylglycerol lipase activity or the release of arachidonic acid from washed human platelets stimulated with collagen. At a high concentration (250 microM), the compound inhibited the formation of arachidonyl-monoacylglycerol by 70% and the release of arachidonate by 60%. However, at this concentration RHC 80267 was found to inhibit cyclooxygenase activity, phospholipase C activity and the hydrolysis of phosphatidylcholine (PC) (presumably by inhibiting phospholipase A2). The phospholipase C inhibition was attributed to the inhibition of prostaglandin H2 formation, as it was alleviated by the addition of the endoperoxide analog, U-46619. PC hydrolysis was only partially restored with U-46619, suggesting that RHC 80267 directly alters phospholipase A2 activity. The inhibition of arachidonate release observed was accounted for by the inhibition of PC hydrolysis. We conclude that RHC 80267, because of its lack of specificity at concentrations needed to inhibit diacylglycerol lipase, is an unsuitable inhibitor for studying the release of arachidonic acid in intact human platelets.  相似文献   

8.
RHC 80267 inhibits diglyceride lipase activity in microsomes from canine platelets (1). Chau and Tai (2) reported that RHC 80267 prevents the transient accumulation of monoglyceride in thrombin-stimulated human platelets, while leaving arachidonate release unimpaired. In contrast, we find that while the drug inhibits both diglyceride lipase (I50=15 μM) and monoglyceride lipase (I50=11 μM) activities in platelet microsomes, it is ineffective when added to intact platelets. The transient intermediates in the diglyceride lipase pathway, 1,2-diglyceride and 2-monoglyceride, both accumulated after thrombin stimulation of intact platelets treated with RHC 80267, and arachidonate release was not inhibited. We conclude that RHC 80267 cannot be used to evaluate the diglyceride lipase pathway in intact platelets.  相似文献   

9.
We studied the possible involvement of diacylglycerol lipase in the regulatory mechanisms governing the release of prolactin by primary cultures of anterior pituitary cells. This was accomplished by studying the effect of a selective inhibitor of diacylglycerol lipase activity, RHC 80267, on basal prolactin release and that stimulated by TRH and elevated potassium concentrations. RHC 80267 produced a concentration-dependent reduction in basal prolactin release and abolished its increase produced by TRH and potassium. These results are consistent with the hypothesis that the production of arachidonate from lipids via the diacylglycerol lipase pathway is an important event in the governance of prolactin release.  相似文献   

10.
The effects of phorbol myristate acetate, an activator of protein kinase C, on the release of [3H]arachidonic acid and prostaglandin synthesis were studied in an osteoblast cell line (MC3T3-E1). Phorbol myristate acetate (20 uM) liberated 16 and 55% of the [3H]arachidonate in prelabeled phosphatidylinositol and phosphatidylethanolamine, respectively, and evoked a 19-fold stimulation in the synthesis of prostaglandin E2. Phorbol myristate acetate doubled the cellular mass of 1,2-diacylglycerol and stimulated the liberation of [3H]arachidonate from the diacylglycerol pool in prelabeled cells. The diacylglycerol lipase inhibitor RHC 80267 blocked 75–80% of the phorbol ester-promoted (total) cellular liberation of [3H]arachidonic acid and production of prostaglandin E2. In comparison, the release of [3H]arachidonate from phosphatidylethanolamine (but not phosphatidylinositol) was only partially antagonized (to the same degree) by the PLA2 inhibitor p-bromophenacylbromide and the protein kinase C inhibitor Et-18-OMe. PMA-induced formation of diacylglycerol or synthesis of PGE2 was not affected by the prior inhibition of protein kinase C. Therefore, we have shown a novel pathway for the liberation of arachidonic acid in osteoblasts involving the nonspecific hydrolysis of phosphatidylinositol and phosphatidylethanolamine by phospholipase C followed by the deesterification of diacylgycerol. This pathway can be activated by a phorbol ester through a protein kinase C-independent mechanism.  相似文献   

11.
We earlier showed that the diacylglycerol (DG) lipase inhibitor, RHC 80267, increased the steady-state level of DG and inhibited the release of arachidonic acid (AA) in carbamylcholine (CCh)-stimulated pancreatic minilobules (J. F. Dixon and L. E. Hokin, (1984) J. Biol. Chem. 259, 14418-14425). There was no effect on phospholipid metabolism. We have now investigated the effect of RHC 80267 on CCh-stimulated formation of inositol monophosphate formation, cGMP formation, and amylase release. CCh (10 microM) increased cGMP formation by approximately 20-fold, and this response was inhibited 55-75% by RHC 80267 (75-100 microM). RHC 80267 had no effect on either nitroprusside- or calcium ionophore-stimulated cGMP formation, arguing against a direct inhibition of guanylate cyclase by RHC 80267. Arachidonic acid, the release of which is inhibited by RHC 80267, neither stimulated cGMP formation nor reversed the effect of RHC 80267 on CCh-stimulated cGMP formation. This suggests, but does not prove, that the rise in cGMP in response to CCh is not due to an increase in AA as has been suggested. Both phorbol myristate acetate (25 nM) and the DG kinase inhibitor R 59022 (10 microM) inhibited CCh-stimulated cGMP formation by 40%. RHC 80267 also inhibited CCh-stimulated inositol phosphate accumulation and amylase release by 60 and 40%, respectively. The data suggest that the inhibition of CCh-stimulated cGMP formation and other muscarinic responses by RHC 80267 is probably the result of feedback inhibition of the cholinergic receptor via activation of protein kinase C by the elevated DG.  相似文献   

12.
We previously suggested that insulin increases diacylglycerol (DAG) in BC3H-1 myocytes, both by increases in synthesis de novo of phosphatidic acid (PA) and by hydrolysis of non-inositol-containing phospholipids, such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). We have now evaluated these insulin effects more thoroughly, and several potential mechanisms for their induction. In studies of the effect on PA synthesis de novo, insulin stimulated [2-3H]glycerol incorporation into PA, DAG, PC/PE and total glycerolipids of BC3H-1 myocytes, regardless of whether insulin was added simultaneously with, or after 2 h or 3 or 10 days of prelabelling with, [2-3H]glycerol. In prelabelled cells, time-related changes in [2-3H]glycerol labelling of DAG correlated well with increases in DAG content: both were maximal in 30-60 s and persisted for 20-30 min. [2-3H]Glycerol labelling of glycerol 3-phosphate, on the other hand, was decreased by insulin, presumably reflecting increased utilization for PA synthesis. Glycerol 3-phosphate concentrations were 0.36 and 0.38 mM before and 1 min after insulin treatment, and insulin effects could not be explained by increases in glycerol 3-phosphate specific radioactivity. In addition to that of [2-3H]glycerol, insulin increased [U-14C]glucose and [1,2,3-3H]glycerol incorporation into DAG and other glycerolipids. Effects of insulin on [2-3H]glycerol incorporation into DAG and other glycerolipids were half-maximal and maximal at 2 nM- and 20 nM-insulin respectively, and were not dependent on glucose concentration in the medium, extracellular Ca2+ or protein synthesis. Despite good correlation between [3H]DAG and DAG content, calculated increases in DAG content from glycerol 3-phosphate specific radioactivity (i.e. via the pathway of PA synthesis de novo) could account for only 15-30% of the observed increases in DAG content. In addition to increases in [3H]glycerol labelling of PC/PE, insulin rapidly (within 30 s) increased PC/PE labelling by [3H]arachidonic acid, [3H]myristic acid, and [14C]choline. Phenylephrine, ionophore A23187 and phorbol esters did not increase [2-3H]glycerol incorporation into DAG or other glycerolipids in 2-h-prelabelling experiments; thus activation of the phospholipase C which hydrolyses phosphatidylinositol, its mono- and bis-phosphate, Ca2+ mobilization, and protein kinase C activation, appear to be ruled out as mechanisms to explain the insulin effect on synthesis de novo of PA, DAG and PC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The possible mechanisms by which phospholipid metabolism may be involved in the biochemical events underlying pituitary hormone secretion in basal and stimulated conditions were examined. Particular emphasis was given to the role of changes in the turnover of specific membrane phospholipids, the polyphosphoinositides, in the stimulatory effect of TRH and neurotensin on prolactin release in vitro. Finally, some comments on the involvement of arachidonate and/or its metabolites in the mechanisms of release of the hormone have been reported. In this respect, the possibility that a specific diacylglycerol lipase may represent a link between the 'phosphatidylinositol effect' and the production of arachidonate from mammotroph membranal phospholipids was examined using the rather selective inhibitor of diacylglycerol lipase RHC80267.  相似文献   

14.
Epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) were found to provoke increases in [3H]2-deoxyglucose uptake, diacylglycerol (DAG) generation and membrane-bound protein kinase C activity in BC3H-1 myocytes. These effects were similar to those provoked by insulin. The increases in DAG did not appear to be derived from hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) or phosphatidylinositol, but may have been derived from synthesis of phosphatidic acid de novo, and hydrolysis of phosphatidylcholine, as revealed by studies with [3H]glycerol and [3H]choline respectively. Accordingly, both EGF and IGF-I increased acute [3H]glycerol labelling of DAG (and other lipids) and [3H]choline labelling of phosphocholine. These labelling responses were similar in time course, suggesting that they are closely coupled. Our findings suggest that EGF and IGF-I, like insulin, increase DAG-protein kinase C signalling, apparently by activating co-ordinated lipid-synthesis and -hydrolysis responses, which are distinctly different from the PIP2-hydrolysis response.  相似文献   

15.
The role of diacylglycerol (DG) as a source of arachidonic acid during gonadotropin-releasing hormone (GnRH) stimulation of gonadotropin secretion was analyzed in primary cultures of rat anterior pituitary cells. An inhibitor of DG lipase (RHC 80267, RHC) caused dose-dependent blockade of GnRH-stimulated luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. The DG lipase inhibitor did not alter gonadotropin responses to arachidonic acid, and addition of arachidonic acid reversed its inhibition of GnRH-stimulated LH and FSH release. In [3H]arachidonic acid-prelabeled cells, incubation with RHC increased the accumulation of [3H]DG. These results suggest that DG lipase participates in GnRH action and that arachidonic acid mobilization from DG is involved in the mechanism of gonadotropin release. Gonadotropin responses to tetradecanoyl phorbol acetate and dioctanoyl glycerol were not altered by RHC, and the addition of these activators of protein kinase C (Ca2+- and phospholipid-dependent enzyme) did not prevent the inhibition of GnRH-induced gonadotropin release by RHC. Activation of phospholipase A2 by melittin increased LH and FSH secretion, whereas blockade of this enzyme by quinacrine reduced GnRH-stimulated hormone release. However, RHC did not diminish the gonadotropin response to melittin. The inhibitory actions of RHC and quinacrine were additive and were reversed by concomitant treatment with arachidonic acid. Ionomycin also increased LH and FSH release, and the gonadotropin responses to the ionophore were unaltered by RHC but were reduced by quinacrine. Incubation of cells in Ca2+-depleted (+/- [ethylenebis(oxyethylenenitrilo)]tetraacetic acid) medium reduced but did not abolish the LH and FSH releasing activity of GnRH. Treatment with RHC also reduced the gonadotropin responses to GnRH under Ca2+-depleted conditions. These observations indicate that RHC inhibition of GnRH action is not due to nonspecific actions on Ca2+ entry, protein kinase C activation and actions, nor phospholipase A2 enzyme activity. The results of this study provide further evidence for an extracellular Ca2+-independent mechanism of GnRH action, and suggest that GnRH causes mobilization of arachidonic acid by two distinct lipases, namely, phospholipase A2 and DG lipase, during stimulation of gonadotropin secretion.  相似文献   

16.
The physiological role of IP(3)-dependent Ca(2+) release in T cell activation was in question due to the contradictory findings that [8-(Diethylamino)octyl-3,4,5-trimethoxybenzoate, HCl] (TMB-8), an inhibitor of intracellular Ca(2+) mobilization, blocked T cell proliferation, curtailing specifically the level of released Ca(2+) did not affect T cell activation and T cell line lacking IP(3) receptor was defective in IL-2 production in response to TCR/CD3 ligand. In the present study we found that TMB-8 inhibited Concanavalin A (Con A)- but not PMA/Ionomycin-induced T cell proliferation in a reversible and dose-dependent manner. The kinetic study revealed that TMB-8 exerted the inhibitory effect at a very early step of T cell activation. The Ca(2+) ionophore ionomycin augmented instead of overcoming the inhibitory effect of TMB-8, although the same doses of ionomycin alone had no effect on Con A-induced T cell proliferation. PMA the metabolically stable, but not diacylglycerol (DAG) the metabolically labile, activator of protein Kinase C (PKC) completely overcome the antiproliferative effect of TMB-8. A specific DAG lipase inhibitor RHC80267 also overcome the effect of TMB-8. Taken together, these results showed that the process of Ca(2+) release through IP(3) receptor, not the released Ca(2+), is essential for the sustained phase of PKC activation during T cell proliferation.  相似文献   

17.
ACh stimulates arachidonic acid (AA) release from membrane phospholipids of vascular endothelial cells (ECs). In rabbit aorta, AA is metabolized through the 15-lipoxygenase pathway to form vasodilatory eicosanoids 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) and 11,12,15-trihydroxyeicosatrienoic acid (THETA). AA is released from phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by phospholipase A2 (PLA2), or from phosphatidylinositol (PI) by phospholipase C (PLC) pathway. The diacylglycerol (DAG) lipase can convert DAG into 2-arachidonoylglycerol from which free AA can be released by monoacylglycerol (MAG) lipase or fatty acid amidohydrolase (FAAH). We used specific inhibitors to determine the involvement of the PLC pathway in ACh-induced AA release. In rabbit aortic rings precontracted by phenylephrine, ACh induced relaxation in the presence of indomethacin and N(omega)-nitro-L-arginine (L-NNA). These relaxations were blocked by the PLC inhibitor U-73122, DAG lipase inhibitor RHC-80267, and MAG lipase/FAAH inhibitor URB-532. Cultured rabbit aortic ECs were labeled with [14C]AA and stimulated with methacholine (10(-5) M). Free [14C]AA was released by methacholine. Methacholine decreased the [14C]AA content of PI, DAG, and MAG fractions but not PC or PE fractions. Methacholine-induced release of [14C]AA was blocked by U-73122, RHC-80267, and URB-532 but not by U-73343, an inactive analog of U-73122. The data suggested that ACh activates PLC, DAG lipase, and MAG lipase pathway to release AA from membrane lipids. This pathway is important in regulating vasodilatory eicosanoid synthesis and vascular relaxation in rabbit aorta.  相似文献   

18.
The effects of insulin on phospholipid metabolism and generation of diacylglycerol (DAG) and on activation of protein kinase C in rat hepatocytes were compared to those of vasopressin and angiotension II. Insulin provoked increases in [3H]glycerol labeling of phosphatidic acid (PA), diacylglycerol (DAG), and other glycerolipids within 30 s of stimulation. Similar increases were also noted for vasopressin and angiotensin II. Corresponding rapid increases in DAG mass also occurred with all three hormones. As increases in [3H]DAG (and DAG mass) occurred within 30-60 s of the simultaneous addition of [3H]glycerol and hormone, it appeared that DAG was increased, at least partly, through the de novo synthesis of PA. That de novo synthesis of PA was increased is supported by the fact that [3H]glycerol labeling of total glycerolipids was increased by all three agents. Increases in [3H]glycerol labeling of lipids by insulin were not due to increased labeling of glycerol 3-phosphate, and were therefore probably due to activation of glycerol-3-phosphate acyltransferase. Unlike vasopressin, insulin did not increase the hydrolysis of inositol phospholipids. Insulin- and vasopressin-induced increases in DAG were accompanied by increases in cytosolic and membrane-associated protein kinase C activity. These findings suggest that insulin-induced increases in DAG may lead to increases in protein kinase C activity, and may explain some of the insulin-like effects of phorbol esters and vasopressin on hepatocyte metabolism.  相似文献   

19.
The diacylglycerol (DAG) signal generated from membrane phospholipids by hormone-activated phospholipases is attenuated by mechanisms that include lipolysis or phospholipid resynthesis. To determine whether the DAG signal might also be terminated by incorporation of DAG into triacylglycerol (TAG), we studied the direct formation of TAG from endogenous DAG generated by bacterial phospholipase C (PLC). When Chinese hamster ovary (CHO) cells prelabeled with [(14)C]oleate were treated with PLC from Clostridium perfringens for 6 h, [(14)C]phospholipid decreased 15% and labeled TAG increased 60%. This transfer of (14)C label was even greater when the cells were simultaneously exposed to PLC and 100 microM oleic acid. PLC as well as oleate treatment concomitantly increased the TAG mass within the cell. Moreover, when phospholipids were prelabeled with [(3)H]glycerol, a subsequent increase in [(3)H]TAG indicated that an intact DAG moiety was channeled into the TAG structure. Incubating CHO cells with the diacylglycerol kinase inhibitor R59022 enhanced the formation of TAG from phospholipids hydrolyzed by PLC or by PLC in the presence of 100 microM oleate, but not by incubation with oleate alone, indicating that the DAG released from plasma membrane phospholipids does not require the formation of a phosphatidic acid precursor for TAG synthesis. Similarly, the diacylglycerol lipase inhibitor RHC 80267 did not alter TAG synthesis from plasma membrane DAG, further supporting direct incorporation of DAG into TAG.These studies indicate that DAG derived from plasma membrane phospholipid is largely used for TAG formation, and support the view that this mechanism can terminate DAG signals. The studies also suggest that a transport mechanism exists to move plasma membrane-derived DAG to the endoplasmic reticulum.-Igal, R. A., J. M. Caviglia, I. N. T. de Gómez Dumm, and R. A. Coleman. Diacylglycerol generated in CHO cell plasma membrane by phospholipase C is used for triacylglycerol synthesis. J. Lipid Res. 2001. 42: 88;-95.  相似文献   

20.
Human platelets prelabeled with arachidonate exhibited a rapid and transient rise in arachidonoyl monoglyceride in addition to arachidonoyl diglyceride following thrombin stimulation. Substantial release of arachidonate and its metabolites also occurred at the early phase. Preincubation of labeled platelets with RHC 80267, a potent inhibitor of diglyceride lipase, prior to thrombin stimulation abolished the transient rise in monoglyceride but not the increase in diglyceride and the release of arachidonate and its metabolites. These results suggest that diglyceride does metabolize to monoglyceride and release arachidonate in intact platelets. However, the diglyceride/monoglyceride lipases pathway does not appear to be essential in releasing arachidonate during thrombin stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号