首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solute reflection coefficients, sigma i, of rat kidney brush-border membrane vesicles were determined by the comparison of water flows induced by equiosmolal gradients of sucrose and NaCl, KCl or mannitol. The values of 0.53 for sigma NaCl and 0.56 for sigma KCl when compared with 0.92 for sigma mannitol suggested some interactions between salt and water pathways. Altering the membrane proteins with 0.4 mM HgCl2 decreased the osmotic water permeability of the vesicles by 70 to 80% and brought sigma NaCl and sigma KCl to a value not different from 1. This argued in favor of water protein pathways in the luminal membrane of kidney proximal cells which are partly accessible to NaCl and KCl.  相似文献   

2.
1. We have studied different parameters, in their effects on a transport system chosen as a model: the Na+-phosphate symporter of the renal brush border membrane. 2. Ionic strength was found to be a critical factor in the retention capacity of the filter. 3. When high ionic strength solutions containing 150 mM NaCl or KCl were used, less than 8% of the membrane proteins were lost through filtration. 4. Lowering the ionic strength by replacing NaCl or KCl by 300 mM mannitol, however, caused a 52% loss of protein. 5. Addition of 15 mM NaCl to this low ionic strength solution was sufficient to restore full retention of the vesicles by the filter. 6. The presence of arsenate, a competitive inhibitor, in the stop solution did not improve the retention of phosphate by the vesicles in high ionic strength media, but caused a pronounced temperature dependent loss of the vesicle content, as a function of time of incubation in low ionic strength solutions. 7. Addition of 5 mM phosphate in the stop solution caused a 31 and 37% loss for KCl and NaCl stop solutions, respectively, while no effect was observed for the mannitol stop solution. 8. The presence of HgCl2 gave a 32% stimulation for the mannitol solution and a 35 or 22% inhibition for the KCl or NaCl solutions. 9. Addition of NaCl in the stop solution caused an overaccumulation of 75%, after 60 sec of incubation at 25 degrees C. 10. Phosphate transport by renal vesicles is thus highly affected by the composition of the stop solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Using mouse small intestine brush-border membrane vesicles virtually free of xanthine oxidase (EC 1.2.3.2) and free of uricase (EC 1.7.3.3) the uptake of the purines uric acid, xanthine and hypoxanthine have been studied. The sodium-dependent overshoot phenomenon shown to exist for the uptake into the vesicles for d-glucose and l-phenylalanine was not observed with the purines. However, the uptake of the three purines in the presence of NaCl or KCl was greater than the uptake in the presence of either NaSCN or mannitol. Although 12.9% of the xanthine uptake and 17.6% of the hypoxanthine uptake was attributed to binding to the membranes, almost all the uric acid uptake was due to transport into an osmotically active space. The apparent intravesicular volume, calculated after 60 min incubation, for the three purines was consistently greater than the values obtained with d-glucose, l-phenylalanine equilibration, suggesting slow continuing penetration of purines associated with swelling or an apparent accumulation of purines within the vesicles associated with normal vesicle volume.  相似文献   

4.
Hydrolytic activities of isolated membrane fractions of Escherichia coli against chromogenic substrates, p-nitrophenyl ester and beta-naphthyl ester derivatives of N-substituted amino acids, were investigated by spectrophotometric and electrophoretic methods. Although detergents were absolutely necessary for the solubilization of enzymes, the amount of solubilized activities was increased by adding salt, such as NaCl or KCl. Two esterases were identified and separated by PAGE and by chromatography of the solubilized proteins in the presence of detergent. One hydrolyzed the alanine derivatives preferentially, whereas the other was mainly active on phenylalanine derivatives. Only the first was inactivated by diisopropyl fluorophosphate, a serine hydrolase inhibitor. Whereas the chymotrypsin-like enzyme was equally distributed between the inner and the outer membrane, the alanine activity was only detected in the inner membrane. They were both resistant to extraction with high salt concentrations, indicating their integral association with membranes. A study of the accessibility of these enzymes to their substrate in membrane vesicles with known polarity suggests that both alanine and phenylalanine activities are localized near the external surface of the cytoplasmic (inner) membrane. However, the phenylalanine activity (chymotrypsin-like enzyme) appears to be deeply buried inside the outer membrane. Because of its insensitivity to diisopropyl fluorophosphate, this last esterase seems to be distinct from the previously isolated periplasmic endopeptidase, protease I, which is also a chymotrypsin-like enzyme.  相似文献   

5.
A Drosophila cell-free system was used to characterize proteins that are required for targeting vesicles to chromatin and for fusion of vesicles to form nuclear envelopes. Treatment of vesicles with 1 M NaCl abolished their ability to bind to chromatin. Binding of salt-treated vesicles to chromatin could be restored by adding the dialyzed salt extract. Lamin Dm is one of the peripheral proteins whose activity was required, since supplying interphase lamin isoforms Dm1, and Dm2 to the assembly extract restored binding. As opposed to the findings in Xenopus, okadaic acid had no effect on vesicle binding. Trypsin digestion of the salt-stripped vesicles eliminated their association with chromatin even in the presence of the dialyzed salt extract. One vesicles attached to chromatin surface, fusion events took place were found to be sensitive to guanosine 5'-[gamma-thio]triphosphate (GTP gamma S). These chromatin-attached vesicles contained lamin Dm and otefin but not gp210. Thus, these results show that in Drosophila there are two populations of nuclear vesicles. The population that interacts first with chromatin contains lamin and otefin and requires both peripheral and integral membrane proteins, whereas fusion of vesicles requires GTPase activity.  相似文献   

6.
Summary Microsomal fractions were isolated from gastric antrum and fundus smooth muscle of guinea pigs. Ca2+ uptake into and Ca2+ release from the membrane vesicles were studied by a rapid filtration method, and Ca2+ transport properties of the different regions of the stomach were compared. ATP-dependent Ca2+ uptake was similar in microsomes isolated from both regions. This uptake was increased by oxalate and was not affected by NaN3. Oxalate affected Ca2+ permeability of both antrum and fundus microsome vesicles similarly. Fundus microsome vesicles preincubated in 100mm NaCl and then diluted to 1/20 concentration with Na+-free medium had significantly higher ATP-independent Ca2+ uptake than vesicles preincubated in 100mm KCl and treated the same way. This was not true for antrum vesicles. Monensin abolished Na+-dependent Ca2+ uptake, and NaCl enhanced Ca2+ efflux from fundus microsome vesicles. The halflife values of Ca2+ loss from fundus vesicles in the presence of NaCl were significantly smaller than those in the presence of KCl. The release of Ca2+ from the vesicles within the first 3 min was accelerated by NaCl to three times that by KCl. However, NaCl had ro effect on Ca2+ release from antrum microsome vesicles.Results suggest two distinct mechanisms of stomach membrane Ca2+ transport: (1) ATP-dependent Ca2+ uptake and (2) Na+–Ca2+ exchange; the latter in the fundus only.  相似文献   

7.
Fanconi's syndrome was investigated using brush border membrane (BBM) vesicles isolated from dog kidney. Sodium-dependent uptake of glucose, phosphate, and amino acids and protein phosphorylation were studied in BBM isolated from normal and from 4-pentenoate- and maleate-treated animals. The time course of D-glucose and phosphate uptake, in BBM vesicles, remained unchanged, indicating that both treatments had no effect on carrier properties, and that permeabilities to these substrates and to sodium were not modified. Furthermore, sodium-dependent transport of alanine, phenylalanine, proline, glycine, and glutamate into vesicles remained unaltered by either treatment. 4-Pentenoate treatment caused modifications of the phosphorylation pattern of BBM proteins: the phosphorylation of two proteins (61 and 74 kDa) was increased and that of two others (48 and 53 kDa) was decreased. Maleate treatment caused an increase in the phosphorylation for the same 61-kDa protein, which was also affected by 4-pentenoate treatment, suggesting that phosphorylation of this protein could be related to a mechanism involved in both 4-pentenoate- and maleate-induced Fanconi's syndrome. These changes were also observed in the presence of sodium fluoride and L-bromotetramisole, indicating that the modification of phosphorylation was not due to a difference in phosphatase activities. These results suggest that Fanconi's syndrome induced by 4-pentenoate or maleate is not caused by an inhibition of BBM Na(+)-dependent transport systems. Our results also suggest that protein phosphorylation may play an important role in the molecular defect involved in Fanconi's syndrome.  相似文献   

8.
The site density of the Na2+-Ca2+ exchanger in bovine cardiac sarcolemma was estimated from measurements of the fraction of reconstituted proteoliposomes exhibiting exchange activity. Sarcolemmal vesicles were solubilized with 1% Triton X-100 in the presence of either 100 mM NaCl or 100 mM KCl; after a 20-40-min incubation period on ice, sufficient KCl, NaCl, CaCl2, and soybean phospholipids were added to each extract to give final concentrations of 40 mM NaCl, 120 mM KCl, 0.1 mM CaCl2, and 10 mg/ml phospholipid. These mixtures were then reconstituted into proteoliposomes, and the rate of 45Ca2+ isotopic exchange was measured under equilibrium conditions. Control studies showed that Na+-Ca2+ exchange activity was completely lost if Na+ was not present during solubilization. The difference in 45Ca2+ uptake between vesicles initially solubilized in the presence or absence of NaCl therefore reflected exchange activity and corresponded to 3.1 +/- 0.3% of the total 45Ca2+ uptake by the entire population of vesicles, as measured in the presence of the Ca2+ ionophore A23187. Assuming that each vesicle with exchange activity contained 1 molecule of the Na+-Ca2+ exchange carrier, a site density of 10-20 pmol/mg of protein for the exchanger was calculated. The Vmax for Na+-Ca2+ exchange activity in the proteoliposomes was approximately 20 nmol/mg of protein.s which indicates that the turnover number of the exchange carrier is 1000 s-1 or more. Thus, the Na+-Ca2+ exchanger is a low density, high turnover transport system.  相似文献   

9.
J S Binford  Jr  W H Palm 《Biophysical journal》1994,66(6):2024-2028
Three surfactants (chlorpromazine hydrochloride, thioridazine hydrochloride, and sodium deoxycholate) are found to absorb just as strongly into the protein-containing membranes of erythrocytes as into the phospholipid bilayers of synthetic vesicles. In the concentration region where hemolysis occurs and the Langmuir adsorption isotherm is no longer valid, one may use a phase partition model in which the erythrocyte membrane is one of the phases. The partition coefficients, expressed as the ratio of mole fraction surfactant in the membrane lipid phase to concentration of surfactant in the aqueous phase, have been calculated at the point of saturation in the erythrocyte membrane. These values are Ky = 430 M-1 (chlorpromazine, pH 5.9), 550 M-1 (deoxycholate, pH 7.6), and 640 M-1 (thioridazine, pH 5.9), in isotonic buffer at 27 degrees C. Corresponding values for synthetic vesicles made from dimyristoylphosphatidylcholine are Kx = 230 M-1 (chlorpromazine, 0.12 M buffer/KCl pH 5.9), 440 M-1 (deoxycholate, 0.20 M buffer/NaCl pH 8.0) and 510 M-1 (thioridazine, 0.12 M buffer/KCl pH 5.9), at 27 degrees C. It appears that the surfactants become an integral part of the bilayer in both vesicles and natural membranes and that the absorption is not of a peripheral nature. There is no evidence that the presence of proteins in the natural membrane inhibits the absorption of these surfactants in any way.  相似文献   

10.
The characteristics of uridine transport were studied in rabbit intestinal brush-border membrane vesicles. Uridine was taken up into an osmotically active space in the absence of metabolism and there was no binding of uridine to the membrane vesicles. Uridine uptake was markedly enhanced by sodium, but showed no significant stimulation by other monovalent cations tested. Kinetic analysis of the sodium-dependent component of uridine flux indicated a single system obeying Michaelis-Menten kinetics (Km value of 6.4 +/- 1.4 microM with a Vmax of 9.1 +/- 3.6 pmol/mg protein per s as measured under zero-trans conditions with a 100 mM NaCl gradient at 24 degrees C). A variety of purine and pyrimidine nucleosides were able to inhibit sodium-dependent uridine transport, suggesting that these nucleosides are also permeants for the same system. Consistent with this suggestion was the finding that these nucleosides also stimulated uridine efflux from the brush-border membrane vesicles. The sodium: uridine coupling stoichiometry was found to be 1:1 as measured by the activation method. From these results it is concluded that a broad specificity sodium-dependent nucleoside transporter is present at the brush-border membrane surface of rabbit enterocytes.  相似文献   

11.
Alkaline and acid phosphatases (EC 3.1.3.1 and EC 3.1.3.2, respectively) ofHalomonas elongata were cytochemically localized on the cell envelope. These enzymes were then isolated and partially purified by sonication, ammonium sulfate precipitation, and column chromatography from cells grown in alanine defined medium at 0.05, 1.37, and 3.4M NaCl. Enzyme assays were conducted at pH 5.0 and 9.0 with varying concentrations of NaCl, KCl, and LiCl in the assay buffer. Results showed higher acid phosphatase activity compared with that of alkaline phosphatase; and all enzyme activities were optimal at NaCl concentrations similar to the medium NaCl concentrations for the cells grown at 1.37 and 3.4M. However, minimum enzyme activities were observed for cells grown at the low salt concentration (0.05M). Although samples showed strong activities at some KCl concentrations, generally the enzyme activities decreased significantly when KCl or LiCl was substituted for NaCl. Polyacrylamide gel electrophoresis followed by histochemical staining for the phosphatases showed only one band for both enzymes for each cell sample grown at the different NaCl concentrations.  相似文献   

12.
The moderately halophilic bacterium Micrococcus varians, isolated from soy sauce mash, produced extracellular nuclease when cultivated aerobically in media containing 1 to 4 M NaCl or KCl. The enzyme, purified to an electrophoretically homogeneous state, had both ribonuclease and deoxyribonuclease activities. The nuclease had maximal activity in the presence of 2.9 M NaCl or 2.1 M KCl at 40 C. The enzymatic activity was lost by dialysis against low-salt buffer, whereas when the inactivated enzyme was dialyzed against 3.4 M NaCl buffer as much as 77% of the initial activity could be restored.  相似文献   

13.
The endogenous phosphorylation of human erythrocyte cytosolic proteins is markedly increased when the crude cytosol, prior to incubation in the presence of [y-32P] ATP, is submitted to DEAE-cellulose chromatography. Some proteins, including 22 and 23 kDa proteins, are preferentially phosphorylated by cytosolic casein kinase CS, whereas other proteins, including 42 kDa protein, are preferentially phosphorylated by casein kinase CTS. The CS-catalyzed phosphorylation is strongly inhibited by physiological ionic strength (150 mM KCl or NaCl) and by physiological levels (3 mM) of 2,3-bisphosphoglycerate, while CTS-catalyzed phosphorylation is unaffected. The very poor endogenous phosphorylation of these proteins in the crude cytosol may be due to the presence of other cytosolic inhibitors which are removed by DEAE-cellulose chromatography.  相似文献   

14.
M F Pinkston  A H Ritter  H J Li 《Biochemistry》1976,15(8):1676-1685
Interactions between DNA and model proteins, poly(L-Lys(m)L-Ala(n)), where m + n = 100%, have been investigated using thermal denaturation and circular dichroism (CD). All complexes of DNA with these proteins precipitate in a small range of input ratios, protein to DNA, with the midpoints of all precipitation curves close to a 1:1 ratio of lysine to phosphate. The melting temperature of model protein-bound DNA regions decreases slightly as the alanine content of the model protein is increased, which can be explained as a result of insufficient charge neutralization of phosphates by lysine residues in the model proteins. In the free state, these model proteins possess varying amounts of alpha helix, random coil, or a mixture of these two, depending upon the relative lysine/alanine content. When bound to DNA, the CD of the complex shows a substantial increase in alpha-helical structure for those model proteins with 40-60% alanine, while there is no significant change in alpha-helical structure when the percent alanine is either substantially higher or lower (i.e., 81 or 19% alanine). Only those complexes formed with model proteins having 40-60% alanine undergo a drastic transition from a B-type CD to an A-type in the presence of intermediate ionic strength (0.2 M NaCl, for example). Poly(Lys19Ala81)-DNA complexes show a slight transition toward A-type CD at 0.4 M NaCl or higher. Apparently other factors, in addition to alanine and alpha-helical content, must be responsible for this B leads to A transition. At the other extreme of lysine/alanine ratio, with high lysine content, poly(Lys81Ala19) or polylysine, the presence of NaCl produces a B leads to psi transition. The possible significance of these differences in response to the binding of these model proteins is discussed.  相似文献   

15.
V Batuman  I Chadha 《Life sciences》1990,47(14):1187-1193
To investigate the pathogenetic mechanisms of interferon nephrotoxicity, we studied the effect of recombinant interferon alfa-2b on the uptake of 14C-D-glucose and 14C-L-alanine by rat renal brush-border-membrane vesicles. Interferon significantly inhibited 20 sec. sodium-dependent and 5 and 10 min. equilibrium uptake of both glucose and alanine. The inhibitory effect was dose dependent with maximum effect achieved at interferon concentration of 5 X 10(-8)M in the uptake media. The half-maximal inhibitory concentrations, IC50, of interferon on glucose uptake was 1.8 X 10(-8)M, and 5.4 X 10(-9)M on alanine uptake. Dixon plot analysis of uptake data was consistent with pure non-competitive inhibition. The inhibition constants, Ki, 1.5 X 10(-8)M for glucose uptake, and 7.3 X 10(-9)M for alanine uptake, derived from Dixon plots were in close agreement with the IC50s calculated from the semilog dose response curves. These observations reveal that direct interactions at the proximal tubule cell membrane are involved in the pathogenesis of interferon nephrotoxicity, and that its mechanism of nephrotoxicity is similar to that of other low molecular weight proteins.  相似文献   

16.
G Pines  B I Kanner 《Biochemistry》1990,29(51):11209-11214
Membrane vesicles from rat brain exhibit sodium-dependent uptake of L-[3H]glutamate in the absence of any transmembrane ion gradients. The substrate specificity of the process is identical with (Na+ + K+)-coupled L-glutamate accumulation. Although these vesicles are prepared after osmotic shock and are washed repeatedly, they contain about 1.5 nmol/mg of protein endogenous L-glutamate, apparently located inside the vesicles. The affinity of the process (Km approximately 1 microM) is similar to that of (Na+ + K+)-dependent accumulation by the L-glutamate transporter. Membrane vesicles have been disrupted by the detergent cholate, and the solubilized proteins have been subsequently reconstituted into liposomes. The reconstituted proteoliposomes also exhibit the above uptake--with the same characteristics--provided they contain entrapped cold L-glutamate. Counterflow is optimal when sodium is present on both sides of the membrane, but partial activity is still observed when sodium is present either on the inside or on the outside. Increasing the L-glutamate concentration above the Km results in counterflow completely independent of cis sodium. The initial rate of counterflow is 100-200-fold lower than that of net trans potassium dependent flux. The rate of net flux in the presence of trans sodium or lithium is about 10-fold lower than when choline or Tris are used instead. However, the rate of counterflow (no internal potassium present) was not stimulated by replacing internal sodium or lithium by internal choline. Therefore, optimal functioning of the transporter requires internal potassium while internal sodium and lithium are inhibitory.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Sodium-dependent alanine transport in plasma membrane vesicles from rat liver was inactivated in a time- and concentration-dependent fashion by prior treatment of membranes with the acylating reagent diethyl pyrocarbonate (DEPC). Both components of Na+/alanine cotransport (systems A and ASC) were inhibited. Exposure of vesicles to p-bromophenacyl bromide and methyl p-nitrobenzenesulfonate, which share with DEPC reactivity against histidine residues, also led to inhibition of alanine transport through systems A and ASC. The presence of Na+ (100 mM NaCl) and L-alanine (10 mM) during exposure to vesicles to DEPC protected against inactivation of system A (but not system ASC) transport activity. This protective effect was specific and required the presence of L-alanine since the presence of L-phenylalanine alone (10 mM) or L-phenylalanine plus Na+ (100 mM NaCl) did not cause any detectable protection. This overall pattern of protection is opposite to that previously found against specific sulfhydryl reagents (i.e. N-ethylmaleimide), where protection of system ASC was nearly maximal. The pH profile for DEPC-dependent inhibition of system A transport activity suggests modification of amino acid residue(s) with a pKr of approximately 7, most likely histidine(s), in close parallel with the pH dependence of system A transport activity. Our results suggest the presence of critical histidine residues on the system A carrier that may be responsible for the pH dependence of system A transport activity.  相似文献   

18.
The initial rate of passive Ca2+ influx into "heavy" and "light" fractions of sarcoplasmic reticulum (SR) vesicles increases in the presence of univalent cation chlorides. Stimulation of passive Ca2+ influx decreases in the following order: KCl + valinomycin-KSCN- + valinomycin greater than KSI = NaCl greater than choline chloride. K-gluconate + valinomycin and K-gluconate have no effect on the passive Ca2+ influx into SR vesicles. It is supposed that KCl-stimulation of passive Ca2+ influx into SR vesicles under conditions used may be caused by depolarization of the SR membrane.  相似文献   

19.
Transport of the osmoprotectant and cryoprotectant glycine betaine was investigated in membrane vesicles of Listeria monocytogenes. Uptake-driving transmembrane potentials ranging from 111 to 122 mV within the pH range of 5.5 to 7.5 could be generated by the electron donor system ascorbate-phenazine methosulfate but not by the electron donor system ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine. Transport was dependent on both high concentrations of sodium ion and the presence of a hypertonic solute gradient. Arrhenius-type temperature activation was observed. Lineweaver-Burk plots indicated a Km of 4.4 microM for glycine betaine and a Vmax of 700 pmol/min x mg of protein. The Michaelis constant for NaCl depended on the solute used to maintain a constant hyperosmotic pressure, and the Km values were 200 and 75 mM when KCl and sucrose were employed, respectively. Transport was 65% lower in vesicles derived from cells grown under stress provided by KCI rather than NaCl and approximately 94% lower in vesicles derived from cells that were not grown under osmotic stress. This porter appears to be specific for glycine betaine, since neither proline, carnitine, nor choline inhibited uptake effectively. Kinetic studies using ionophores and artificial gradients indicate that glycine betaine is cotransported with sodium ion.  相似文献   

20.
Renal brush border vesicles prepared from rabbit were shown to transport intact glycyl-L-proline into the intravesicular space by a Na+-independent, carrier-mediated process. The kinetics of hydrolysis of glycyl-L-proline by the vesicles showed that this dipeptide was extremely resistant to hydrolysis. The intravesicular concentration of glycyl-L-proline was the same in both NaCl and KCl media. Dipeptide uptake into the vesicles appeared to be via carrier-mediated transport down a concentration gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号