首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A flat-membrane dialyzer was used as enzyme reactor by introducing enzyme solution into one of the membrane-separated chambers. The apparent Michaelis constant Km(app) of urease was always larger (ten times at [urease] = 1 mg/ml) than that of free enzyme because the permeation of substrate through the membrane was rate determining. Km(app) for urease decreased from 125 to 20mM with increasing flow rate of the substrate solution because of the turbulent flow near the membrane. In the case of glucose oxidase or creatine kinase, the reaction rate was limited by the permeation of less permeable substrates such as oxygen or ATP. Therefore, Km(app) of more permeable substrates such as glucose or creatine became smaller than that of free enzyme. The reaction amount calculated from the permeation data agreed well with experimental results. By designing spacers for the reactor to give turbulence to the solution, the effectiveness of the reactor was improved fivefold.  相似文献   

4.
The main aim of this study was the determination of the operational stability of soluble Dke1 (EC 1.13.11.50) in an enzyme membrane reactor. In order to calculate the half-life of soluble Dke1, the K M of oxygen must be known. The determination of this constant was done using progress curve analysis (K M=260 μmol l−1). In a next step, the reactor system was studied by building a mathematical model for calculation of the reactor system, using Berkeley Madonna ver. 8.0.1 software. After that, the determination of the half-life of Dke1 under operational conditions at different temperatures (5, 10, 15, 25, 30, 35°C) was performed. The quantitative criterion for stability was the value of the first-order rate constant of monomolecular inactivation. The experiments showed that soluble Dke1 is poorly stable. The half-life ranged from 308 min at 5°C to 9 min at 35°C. This method for determining the half-life is quite applicable for enzymes which are poorly stable. In addition, both the storage stability and the operational stability can be determined.  相似文献   

5.
A membrane enzyme reactor consisting of variable pieces of replaceable cell-immobilized membranes was proposed for the continuous production of bioproducts. To demonstrate the characteristics of the reactor, cell-immobilized membranes were prepared by the entrapment of permeabilized recombinant Escherichia coli cells containing penicillin G acylase within the gluten matrices. A stainless-steel net that was created with a mesh frame was used to support each gluten membrane so that the membranes could be filled into the rectangular-shaped reactor. The reactor equipped with either six or 12 pieces of cell-immobilized gluten membranes containing a biomass concentration of 5%, w/w was effective in catalyzing the production of 6-aminopenicillanic acid from penicillin G. In comparison with intact cells, the cell-immobilized preparation was more stable and the half-life time of the immobilized cell-associate enzyme in gluten membrane was estimated to be 36 days by a long-term operation. As the substrate solution was forced to flow through the reactor equipped with six membranes and in the direction perpendicular to the membranes, the pressure drop was determined to be less than 50 cm H(2)O with a flow-rate up to 50 mL/min. This low pressure due to the porous structure of gluten membrane would lead to a lower operational cost. Increasing either the number of membranes or the area of each cell-immobilized membrane can easily do scaling-up of this membrane reactor.  相似文献   

6.
Ceramic membrane microfilter as an immobilized enzyme reactor.   总被引:1,自引:0,他引:1  
This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.  相似文献   

7.
The catalytic activity and quaternary structure of soluble (s) and membrane (m) forms of angiotensin-converting enzyme (ACE) were studied in reversed micelles of ternary system Aerosol OT--water--octane. The profile of the dependence of the catalytic activity of the two enzyme forms on the degree of surfactant hydration (micellar size) had several optima corresponding to the function of various active oligomeric enzyme forms; the curves for the s- and m-forms of ACE were different. Data of sedimentation analysis prove that in reversed micelles, s-ACE can exist as monomers, dimers, or tetramers depending on the hydration degree, and the m-form is present as dimers and tetramers only. The values of the kinetic parameters for the hydrolysis of the substrate furylacryloyl-Phe-Gly-Gly by all the enzyme forms were determined, and the data indicate that the activity of the m-form is enhanced by oligomerization. The ACE activity strongly depends on the medium; it is higher when ACE is in contact with matrix or other enzyme molecules.  相似文献   

8.
9.
10.
The deformation of a portion of erythrocyte during aspirational entry into a micropipette has been analyzed on the basis of a constant area deformation of an infinite plane membrane into a cylindrical tube. Consideration of the equilibrium of the membrane at the tip of the pipette has generated the relation between the aspirated length and the dimensionless time during deformational entry as well as during relaxation after the removal of aspiration pressure. Experimental studies on deformation and relaxation of normal human erythrocytes were performed with the use of micropipettes and a video dimension analyzer which allowed the continuous recording of the time-courses. The deformation consisted of an initial rapid phase with a membrane viscosity (range 0.6 x 10(-4) to 4 x 10(-4) dyn.s/cm) varying inversely with the degree of deformation and a later slow phase with a high membrane viscosity (mean 2.06 x 10(-2) dyn.s/cm) which was not correlated with the degree of deformation. The membrane viscosity of the recovery phase after 20 s of deformation (mean 5.44 x 10(-4) dyn.s/cm) was also independent of the degree of deformation. When determined after a short period of deformation (e.g., 2 s), however, membrane viscosity of the recovery phase became lower and agreed with that of the deformation phase. These results suggest that the rheological properties of the membrane can undergo dynamic changes depending on the extent and duration of deformation, reflecting molecular rearrangement in response to membrane strain.  相似文献   

11.
Porous hollow cellulose fibers have been used to separate a nonflowing enzyme solution of alkaline phosphatase from a continuous flow of substrate. The porosity of the hollow fiber membrane allows the substrate and product to diffuse freely through the membrane while restricting the permeation of the enzyme. The resulting “immobilized” enzyme system has been shown to behave as a continuous reactor—converting p-nitrophenylphosphate to p-nitrophenol. By varying the concentrations, flow rate, etc., either diffusion or enzyme kinetics can be studied. The continual influx of product and removal of substrate at steady state allows the study of kinetics of relatively short half-life enzymes and unstable systems.  相似文献   

12.
A tubular membrane reactor offers many advantages over a solid wall reactor to carry out an enzyme catalyzed reaction. With proper membrane selectivity, the product, may be separated from the reacting stream and the enzyme recycled for continuous reuse. In most cases, enzyme reuse contributes to the economic feasibility of a continuous enzyme catalyzed process. Furthermore, the efficiency and performance of a membrane reactor is greater than that of a solid wall reactor. Continuous hydrolysis of starch by the enzyme β-amylase, carried out in a commercially available tubular membrane unit, is studied at different starch and enzyme concentrations for a given system pressure and inlet flow rate. Results show that the performance of the membrane reactor is in all cases greater than that of the solid wall reactor. A steady state in performance of permeation rate is, however, not reached by the membrane reactor, which shows a continuous decline within the periods examined in this study. This decline is caused in part by the aging of the starch solution, but mostly by the formation of a concentrated, or gel, layer at the membrane surface. This appears to be the main limiting factor for this process since the decline in reaction and permeation rate results in a severe decrease in the amount of maltose in the permeate.  相似文献   

13.
A cyclic batch enzyme membrane reactor (CBEMR) incorporating a 8000-Da polyethersulphone membrane was intended for enhancing the enzyme (Protex 6L from Bacillus licheniformis, EC. 3.4.21.62) use in the production of a whey protein hydrolysate. A mechanistic mathematical model comprising zero-order kinetics for the hydrolysis and second-order deactivation for the enzyme was proposed and validated through experiments. The influence of reaction temperature was studied and process optimisation (given the production requirements) was performed in terms of number of batch reactions that minimise the total amount of enzyme used. The optimal operation of the CBEMR allowed savings of up to 44 and 32% of enzyme compared to the single batch operation mode at 50 and 60 °C, respectively. No enzyme savings were detected when temperature was fixed at 70 °C. In general, the optimal operation temperature was 60 °C, yielding lower enzyme consumption for all productivities of the reactor.  相似文献   

14.
Hydrolysis of starch in a membrane reactor.   总被引:2,自引:0,他引:2  
  相似文献   

15.
The peritrophic membrane (PM) is an anatomical structure surrounding the food bolus in most insects. Rejecting the idea that PM has evolved from coating mucus to play the same protective role as it, novel functions were proposed and experimentally tested. The theoretical principles underlying the digestive enzyme recycling mechanism were described and used to develop an algorithm to calculate enzyme distributions along the midgut and to infer secretory and absorptive sites. The activity of a Spodoptera frugiperda microvillar aminopeptidase decreases by 50% if placed in the presence of midgut contents. S. frugiperda trypsin preparations placed into dialysis bags in stirred and unstirred media have activities of 210 and 160%, respectively, over the activities of samples in a test tube. The ectoperitrophic fluid (EF) present in the midgut caeca of Rhynchosciara americana may be collected. If the enzymes restricted to this fluid are assayed in the presence of PM contents (PMC) their activities decrease by at least 58%. The lack of PM caused by calcofluor feeding impairs growth due to an increase in the metabolic cost associated with the conversion of food into body mass. This probably results from an increase in digestive enzyme excretion and useless homeostatic attempt to reestablish destroyed midgut gradients. The experimental models support the view that PM enhances digestive efficiency by: (a) prevention of non-specific binding of undigested material onto cell surface; (b) prevention of excretion by allowing enzyme recycling powered by an ectoperitrophic counterflux of fluid; (c) removal from inside PM of the oligomeric molecules that may inhibit the enzymes involved in initial digestion; (d) restriction of oligomer hydrolases to ectoperitrophic space (ECS) to avoid probable partial inhibition by non-dispersed undigested food. Finally, PM functions are discussed regarding insects feeding on any diet.  相似文献   

16.
The enzymatic esterification of octanoic acid with racemic butanol-2 was investigated. Esterifications of the acid were performed in a forced flow enzyme membrane reactor. The used membrane was prepared by a phase inversion process in polyamide-6 solution followed by the chemical immobilization of a lipase-catalyst. Influences of water content and pH were estimated. Their optimum values are equal to 0.5% w/w and pH 8. The reaction rate (at 303 K) of 5.1 × 10?5 mol/h·cm2 of the membrane area, and at least 85% enantiomeric excess in the produced ester mixture were obtained. The activity of immobilized lipase in the membrane process is about two times higher than that of the native lipase in the esterification performed in a tank reactor.  相似文献   

17.
Flat sheet membranes made of polyetheretherketone, known as PEEK-WC, and O-octyloxycarbonyl beta-cyclodextrins were prepared by the phase inversion method. The cyclodextrins were entrapped in the polymeric membranes easily and simply in a single operation. Such functionalized membranes were tested for their catalytic activity. PNPA hydrolysis in a cyclodextrin membrane reactor was carried out as a model reaction. A significant improvement of reaction rate in comparison with the batch hydroxide ions catalyzed reaction was observed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
This work shows that the enzyme membrane reactor offers the opportunity to carry out the enzymatic regeneration of ATP providing continuous operation with high performance. In this system, the coenzyme is immobilized on a water-soluble polymer. These high-molecular weight derivates are entrapped within an ultrafiltration membrane together with the enzymes for production of regeneration. Several polymer derivatives of ATP have been prepared for this immobilization technique. Coenzymatic activity of these derivatives was studied with several enzymes for both ATP-requiring and ATP-regenerating reactions. PEG-N6-aminohexyl-ATP was selected as the appropriate coenzyme for operating the enzyme membrane reactor. Acetate kinase was the only enzyme providing enough activity for regeneration. Production of glucose-6-phosphate is cited as the first example. The kinetics of acetate kinase and hexokinase were examined and used to choose the operating conditions of the process. The process operated continuously for more than 1 month. With a mean conversion of 80%, the space-time yield amounted to 348 g glucose-6-phosphate/L d. The cycle number of ATP was estimated as 20, 000 mol/mol. With the continuous production of gamma-glutamylcysteine and NADP, the feasibility of the system was proven.  相似文献   

19.
20.
The dose response of soluble and membrane forms of angiotensin-converting enzyme to gamma-irradiation is investigated at different pH values of the medium and at different concentrations of acetate-phosphate buffer. Membrane form of the enzyme is more stable shows principally other conformational equilibrium than the soluble form. "Splitted" activation peaks on the curves of the enzyme dose response are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号