首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the earliest cellular responses to radiation-induced DNA damage is the phosphorylation of the histone variant H2AX (gamma-H2AX). gamma-H2AX facilitates the local concentration and focus formation of numerous repair-related proteins within the vicinity of DNA DSBs. Previously, we have shown that low-dose hyper-radiosensitivity (HRS), the excessive sensitivity of mammalian cells to very low doses of ionizing radiation, is a response specific to G(2)-phase cells and is attributed to evasion of an ATM-dependent G(2)-phase cell cycle checkpoint. To further define the mechanism of low-dose hyper-radiosensitivity, we investigated the relationship between the recognition of radiation-induced DNA double-strand breaks as defined by gamma-H2AX staining and the incidence of HRS in three pairs of isogenic cell lines with known differences in radiosensitivity and DNA repair functionality (disparate RAS, ATM or DNA-PKcs status). Marked differences between the six cell lines in cell survival were observed after high-dose exposures (>1 Gy) reflective of the DNA repair capabilities of the individual six cell lines. In contrast, the absence of functional ATM or DNA-PK activity did not affect cell survival outcome below 0.2 Gy, supporting the concept that HRS is a measure of radiation sensitivity in the absence of fully functional repair. No relationship was evident between the initial numbers of DNA DSBs scored immediately after either low- or high-dose radiation exposure with cell survival for any of the cell lines, indicating that the prevalence of HRS is not related to recognition of DNA DSBs. However, residual DNA DSB damage as indicated by the persistence of gamma-H2AX foci 4 h after exposure was significantly correlated with cell survival after exposure to 2 Gy. This observation suggests that the persistence of gamma-H2AX foci could be adopted as a surrogate assay of cellular radiosensitivity to predict clinical radiation responsiveness.  相似文献   

2.
The hyper-radiosensitivity at low doses recently observed in vitro in a number of cell lines is thought to have important implications for improving tumor radiotherapy. However, cell-cell contact and the cellular environment influence cellular radiosensitivity at higher doses, and they may alter hyper-radiosensitivity in vivo. To confirm this supposition, we investigated the effects of cell density, multiplicity and nutritional deprivation on low-dose hypersensitivity in vitro. Cell survival in the low-dose range (3 cGy to 2 Gy) was studied in cells of two human glioma (BMG-1 and U-87) and two human oral squamous carcinoma (PECA-4451 and PECA-4197) lines using a conventional macrocolony assay. The effects of cell density, multiplicity and nutritional deprivation on hyper-radiosensitivity/induced radioresistance were studied in cells of the BMG-1 cell line, which showed prominent hypersensitivity and induced radioresistance. The induction of growth inhibition, cell cycle delay, micronuclei and apoptosis was also studied at the hyper-radiosensitivity-inducing low doses. Hyper-radiosensitivity/induced radioresistance was evident in the cells of all four cell lines to varying extents, with maximum sensitivity at 10-30 cGy, followed by an increase in survival up to 50 cGy-1 Gy. Both the glioma cell lines had more prominent hyper-radiosensitivity than the two squamous carcinoma cell lines. Low doses inducing maximum hyper-radiosensitivity did not cause significant growth inhibition, micronucleation or apoptosis in BMG-1 cells, but a transient G(1)/S-phase block was evident. Irradiating and incubating BMG-1 cells at high density for 0 or 4 h before plating, as well as irradiating cells as microcolonies, reduced hyper-radiosensitivity significantly, indicating the role of cell-cell contact-mediated processes. Liquid holding of BMG-1 cells in HBSS + 1% serum during and after irradiation for 4 h significantly reduced hyper-radiosensitivity, suggesting that hyper-radiosensitivity may be due partly to active damage fixation processes at low doses. Therefore, our findings suggest that the damage-induced signaling mechanisms influenced by (or mediated through) cell-cell contact or the cellular environment, as well as the lesion fixation processes, play an important role in hyper-radiosensitivity. Further studies are required to determine the exact nature of the damage that triggers these responses as well as for evaluating the potential of low-dose therapy.  相似文献   

3.
Recent advances in our knowledge of the biological effects of low doses of ionizing radiation have shown two unexpected phenomena: a "bystander effect" that can be demonstrated at low doses as a transferable factor(s) causing radiobiological effects in unexposed cells, and low-dose hyper-radiosensitivity and increased radioresistance that can be demonstrated collectively as a change in the dose-effect relationship, occurring around 0.5-1 Gy of low-LET radiation. In both cases, the effect of very low doses is greater than would be predicted by conventional DNA strand break/repair-based radiobiology. This paper addresses the question of whether the two phenomena have similar or exclusive mechanisms. Cells of 13 cell lines were tested using established protocols for expression of both hyper-radiosensitivity/increased radioresistance and a bystander response. Both were measured using clonogenicity as an end point. The results showed considerable variation in the expression of both phenomena and suggested that cell lines with a large bystander effect do not show hyper-radiosensitivity. The reverse was also true. This inverse relationship was not clearly related to the TP53 status or malignancy of the cell line. There was an indication that cell lines that have a radiation dose-response curve with a wide shoulder show hyper-radiosensitivity/increased radioresistance and no bystander effect. The results may suggest new approaches to understanding the factors that control cell death or the sectoring of survival at low radiation doses.  相似文献   

4.
Cells of three asynchronously growing human tumor cell lines, PC3 (human prostate carcinoma), T98G and A7 (human glioblastomas), which have been shown previously to demonstrate low-dose hyper-radiosensitivity to low acute single doses, were irradiated with (60)Co gamma rays at low dose rates (2 cGy-1 Gy h(-1)). Instead of a dose-rate sparing response, these cell lines demonstrated an inverse dose-rate effect on cell survival at dose rates below 1 Gy h(-1), whereby a decrease in dose rate resulted in an increase in cell killing per unit dose. A hyper-radiosensitivity-negative cell line, U373MG, did not demonstrate an inverse dose-rate effect. Analysis of the cell cycle indicated that this inverse dose-rate effect was not due to accumulation of cells in G(2)/M phase or to other cell cycle perturbations. T98G cells in reversible G(1)-phase arrest also showed an inverse dose-rate effect at dose rates below 30 cGy h(-1) but a sparing effect as the dose rate was reduced from 60 to 30 cGy h(-1). We conclude that this inverse dose-rate effect in continuous exposures reflects the hyper-radiosensitivity seen in the same cell lines in response to very small acute single doses.  相似文献   

5.
The initial and rate-limiting enzyme of the oxidative pentose phosphate shunt, glucose-6-phosphate dehydrogenase (G6PD), is inhibited by NADPH and stimulated by NADP(+). Hence, under normal growth conditions, where NADPH levels exceed NADP(+) levels by as much as 100-fold, the activity of the pentose phosphate cycle is extremely low. However, during oxidant stress, pentose phosphate cycle activity can increase by as much as 200-fold over basal levels, to maintain the cytosolic reducing environment. G6PD-deficient (G6PD(-)) cell lines are sensitive to toxicity induced by chemical oxidants and ionizing radiation. Compared to wild-type CHO cells, enhanced sensitivity to ionizing radiation was observed for G6PD(-) cells exposed to single-dose or fractionated radiation. Fitting the single-dose radiation response data to the linear-quadratic model of radiation-induced cytotoxicity, we found that the G6PD(-) cells exhibited a significant enhancement in the alpha component of radiation-induced cell killing, while the values obtained for the beta component were similar in both the G6PD(-) and wild-type CHO cell lines. Here we report that the enhanced alpha component of radiation-induced cell killing is associated with a significant increase in the incidence of ionizing radiation-induced apoptosis in the G6PD(-) cells. These data suggest that G6PD and the oxidative pentose phosphate shunt protect cells from ionizing radiation-induced cell killing by limiting the incidence of radiation-induced apoptosis. The sensitivity to radiation-induced apoptosis was lost when the cDNA for wild-type G6PD was transfected into the G6PD(-) cell lines. Depleting GSH with l-BSO enhanced apoptosis of K1 cells while having no effect in the G6PD(-) cell line  相似文献   

6.
Low-dose radiation hypersensitivity is associated with p53-dependent apoptosis   总被引:12,自引:0,他引:12  
Exposure to environmental radiation and the application of new clinical modalities, such as radioimmunotherapy, have heightened the need to understand cellular responses to low dose and low-dose rate ionizing radiation. Many tumor cell lines have been observed to exhibit a hypersensitivity to radiation doses <50 cGy, which manifests as a significant deviation from the clonogenic survival response predicted by a linear-quadratic fit to higher doses. However, the underlying processes for this phenomenon remain unclear. Using a gel microdrop/flow cytometry assay to monitor single cell proliferation at early times postirradiation, we examined the response of human A549 lung carcinoma, T98G glioma, and MCF7 breast carcinoma cell lines exposed to gamma radiation doses from 0 to 200 cGy delivered at 0.18 and 22 cGy/min. The A549 and T98G cells, but not MCF7 cells, showed the marked hypersensitivity at doses <50 cGy. To further characterize the low-dose hypersensitivity, we examined the influence of low-dose radiation on cell cycle status and apoptosis by assays for active caspase-3 and phosphatidylserine translocation (Annexin V binding). We observed that caspase-3 activation and Annexin V binding mirrored the proliferation curves for the cell lines. Furthermore, the low-dose hypersensitivity and Annexin V binding to irradiated A549 and T98G cells were eliminated by treating the cells with pifithrin, an inhibitor of p53. When p53-inactive cell lines (2800T skin fibroblasts and HCT116 colorectal carcinoma cells) were examined for similar patterns, we found that there was no hyperradiosensitivity and apoptosis was not detectable by Annexin V or caspase-3 assays. Our data therefore suggest that low-dose hypersensitivity is associated with p53-dependent apoptosis.  相似文献   

7.
This review highlights the phenomenon of low-dose hyper- radiosensitivity (HRS), an effect in which cells die from excessive sensitivity to small single doses of ionizing radiation but become more resistant (per unit dose) to larger single doses. Established and new data pertaining to HRS are discussed with respect to its possible underlying molecular mechanisms. To explain HRS, a three-component model is proposed that consists of damage recognition, signal transduction and damage repair. The foundation of the model is a rapidly occurring dose-dependent pre-mitotic cell cycle checkpoint that is specific to cells irradiated in the G2phase. This checkpoint exhibits a dose expression profile that is identical to the cell survival pattern that characterizes HRS and is probably the key control element of low-dose radiosensitivity. This premise is strengthened by the recent observation coupling low- dose radiosensitivity of G2-phase cells directly to HRS. The putative role of known damage response factors such as ATM, PARP, H2AX, 53BP1 and HDAC4 is also included within the framework of the HRS model.  相似文献   

8.
The response of control and ataxia-telangiectasia (A-T) cells to increasing doses of high-linear-energy-transfer (LET) ionizing radiation (neutrons) was compared. Ataxia-telangiectasia cells were markedly more sensitive to neutron irradiation than were control cells. The D0 value for the two A-T cell lines was 0.4 Gy while the value for controls was approximately 1.4 Gy. Fast neutrons were considerably more effective than gamma rays in inducing cell death in both cell types, but the sensitivity factor remained approximately the same as with gamma rays. A minimal depression of DNA synthesis was observed in ataxia-telangiectasia cells after neutron irradiation, similar to that reported previously after gamma irradiation. The extent of inhibition was not significantly greater in control cells, contrary to that seen with gamma rays. In time-course experiments a significant difference in degree of inhibition of DNA synthesis was observed between the cell types. Low doses of fast neutrons induced a G2-phase delay in both cell types, but the degree and extent of this delay was greater in ataxia-telangiectasia cells as observed previously with low-LET radiation.  相似文献   

9.
The aim of this work was to assess whether "modeled microgravity" affects cell response to ionizing radiation, increasing the risk associated with radiation exposure. Lymphoblastoid TK6 cells were irradiated with various doses of gamma rays and incubated for 24 h in a modeled microgravity environment obtained by the Rotating Wall Vessel bioreactor. Cell survival, induction of apoptosis and cell cycle alteration were compared in cells irradiated and then incubated in 1g or modeled microgravity conditions. Modulation of genomic damage induced by ionizing radiation was evaluated on the basis of HPRT mutant frequency and the micronucleus assay. A significant reduction in apoptotic cells was observed in cells incubated in modeled microgravity after gamma irradiation compared with cells maintained in 1g. Moreover, in irradiated cells, fewer G2-phase cells were found in modeled microgravity than in 1g, whereas more G1-phase cells were observed in modeled microgravity than in 1g. Genomic damage induced by ionizing radiation, i.e. frequency of HPRT mutants and micronucleated cells, increased more in cultures incubated in modeled microgravity than in 1g. Our results indicate that modeled microgravity incubation after irradiation affects cell response to ionizing radiation, reducing the level of radiation-induced apoptosis. As a consequence, modeled microgravity increases the frequency of damaged cells that survive after irradiation.  相似文献   

10.
The survival of asynchronous and highly enriched G1-, S- and G2-phase populations of Chinese hamster V79 cells was measured after irradiation with 60Co gamma rays (0.1-10 Gy) using a precise flow cytometry-based clonogenic survival assay. The high-dose survival responses demonstrated a conventional relationship, with G2-phase cells being the most radiosensitive and S-phase cells the most radioresistant. Below 1 Gy, distinct low-dose hyper-radiosensitivity (HRS) responses were observed for the asynchronous and G2-phase enriched cell populations, with no evidence of HRS in the G1- and S-phase populations. Modeling supports the conclusion that HRS in asynchronous V79 populations is explained entirely by the HRS response of G2-phase cells. An association was discovered between the occurrence of HRS and the induction of a novel G2-phase arrest checkpoint that is specific for cells that are in the G2 phase of the cell cycle at the time of irradiation. Human T98G cells and hamster V79 cells, which both exhibit HRS in asynchronous cultures, failed to arrest the entry into mitosis of damaged G2-phase cells at doses less than 30 cGy, as determined by the flow cytometric assessment of the phosphorylation of histone H3, an established indicator of mitosis. In contrast, human U373 cells that do not show HRS induced this G2-phase checkpoint in a dose-independent manner. These data suggest that HRS may be a consequence of radiation-damaged G2-phase cells prematurely entering mitosis.  相似文献   

11.
Qi W  Qiao D  Martinez JD 《Radiation research》2002,157(2):166-174
Caffeine is a model radiosensitizing agent that is thought to work by abrogating the radiation-induced G(2)-phase checkpoint. In this study, we examined the effect that various concentrations of caffeine had on cell cycle checkpoints and apoptosis in cells of a human lung carcinoma cell line and found that a concentration of 0.5 mM caffeine could abrogate the G(2)-phase arrest normally seen after exposure to ionizing radiation. Surprisingly, at a concentration of 5 mM, caffeine not only induced apoptosis by itself and acted synergistically to enhance radiation-induced apoptosis, but also induced a TP53-independent G(1)-phase arrest. Examination of the molecular mechanisms by which caffeine produced these effects revealed that caffeine had opposing effects on different cyclin-dependent kinases. CDK2 activity was suppressed by caffeine, whereas activity of CDC2 was enhanced by suppressing phosphorylation on Tyr15 and by interfering with 14-3-3 binding to CDC25C. These data indicate that the effect of caffeine on cell cycle checkpoints and apoptosis is dependent on dose and that caffeine acts through differential regulation of cyclin-dependent kinase activity.  相似文献   

12.
13.
In our previous study, low-dose hyper-radiosensitivity (HRS) effect was demonstrated for normal fibroblasts (asynchronous and G2-phase enriched) of 4 of the 25 cancer patients investigated. For the rest of patients, HRS was not defined in either of the 2 fibroblast populations. Thus, the study indicated that G2-phase enrichment had no influence on HRS identification. The conclusion contradicts that reported for human tumor cells, and suggests different mechanism of HRS in normal human cells. In the present paper we report, for the first time, the activity of early G2-phase checkpoint after low-dose irradiation in normal fibroblasts of these 4 HRS-positive patients and 4 HRS-negative patients and answer the question regarding the role of this checkpoint in normal human cells. The response of the early G2-phase checkpoint was determined by assessment of the progression of irradiated cells into mitosis using the mitotic marker, phosphorylated histone H3. We found evident differences in the activity of the early G2-phase checkpoint between HRS-positive and HRS-negative fibroblasts. In HRS-positive fibroblasts the checkpoint was not triggered and DNA damage was not recognized after doses lower than 0.2 Gy resulting in HRS response. On the contrary, in HRS-negative fibroblasts the early G2-phase checkpoint was activated regardless of the dose in the range 0.1–2 Gy. In conclusion, although cell cycle phase has no effect on the presence of HRS effect in normal human fibroblasts, the data reported here indicate that HRS response in these cells is associated with the functioning of early G2-phase checkpoint in a threshold-dose dependent manner, similarly as it takes place in most of human tumor and other cells.  相似文献   

14.
Exposure of cells to ionizing radiation causes phosphorylation of histone H2AX at sites flanking DNA double-strand breaks. Detection of phosphorylated H2AX (gammaH2AX) by antibody binding has been used as a method to identify double-strand breaks. Although generally performed by observing microscopic foci within cells, flow cytometry offers the advantage of measuring changes in gammaH2AX intensity in relation to cell cycle position. The importance of cell cycle position on the levels of endogenous and radiation-induced gammaH2AX was examined in cell lines that varied in DNA content, cell cycle distribution, and kinase activity. Bivariate analysis of gammaH2AX expression relative to DNA content and synchronization by centrifugal elutriation were used to measure cell cycle-specific expression of gammaH2AX. With the exception of xrs5 cells, gammaH2AX level was approximately 3 times lower in unirradiated G(1)-phase cells than S- and G(2)-phase cells, and the slope of the G(1)-phase dose-response curve was 2.8 times larger than the slope for S-phase cells. Cell cycle differences were confirmed using immunoblotting, indicating that reduced antibody accessibility in intact cells was not responsible for the reduced antibody binding in G(1)-phase cells. Early apoptotic cells could be easily identified on flow histograms as a population with 5-10-fold higher levels of gammaH2AX, although high expression was not maintained in apoptotic cells by 24 h. We conclude that expression of gammaH2AX is associated with DNA replication in unirradiated cells and that this reduces the sensitivity for detecting radiation-induced double-strand breaks in S- and G(2)-phase cells.  相似文献   

15.
We have used DNA microarrays to identify changes in gene expression in cells of the radioresistant human glioma cell lines T98G and U373 after low radiation doses (0.2-2 Gy). Using Bayesian linear models, we have identified a set of genes that respond to low doses of radiation; furthermore, a hypothesis-driven approach to data analysis has allowed us to identify groups of genes with defined non-linear dose responses. Specifically, one of the cell lines we have examined (T98G) shows increased radiosensitivity at low doses (low-dose hyper-radiosensitivity, HRS); thus we have also assessed sets of genes whose dose response mirrors this survival pattern. We have also investigated a time course for induction of genes over the period when the DNA damage response is expected to occur. We have validated these data using quantitative PCR and also compared genes up-regulated in array data to genes present in the polysomal RNA fraction after irradiation. Several of the radioresponsive genes that we describe code for proteins that may have an impact on the outcome of irradiation in these cells, including RAS homologues and kinases involved in checkpoint signaling, so understanding their differential regulation may suggest new ways of altering radioresistance. From a clinical perspective these data may also suggest novel targets that are specifically up-regulated in gliomas during radiotherapy treatments.  相似文献   

16.
BACKGROUND: Majority of hematopoietic cells die by apoptosis after irradiation with ionizing radiation. In present study it is shown that human promyelocytic leukemia HL-60 cells can undergo two different types of apoptosis, premitotic and postmitotic. METHODS: HL-60 cells were irradiated with doses 8 and 20 Gy. For apoptosis detection APO2.7 antigen (mitochondrial membrane specific protein) expression without and with permeabilization by digitonin was used. This method was compared with flow-cytometric analysis of cell light scattering properties and determination of subG1 DNA. RESULT: Cells irradiated with high dose (20 Gy) died rapidly by premitotic apoptosis (interphase death) from all phases of cell cycle. 2 hours after irradiation cells with subdiploid DNA content and cells stained by APO2.7 after digitonin permeabilization appeared. After 6 hours 40% of cells were apoptotic, nonapoptotic cells were mainly in G1-phase. Lower dose (8 Gy) after 6 hours of irradiation caused accumulation of cells in S-phase. After 24 hours majority of cells was in G2-phase and apoptotic cells appeared (subG1 peak, APO2.7 with permeabilization). CONCLUSION: Data presented herein indicate that mitochondrial membrane protein-specific antibody APO2.7 after permeabilization is a useful marker for detection of early apoptotic cells dying by premitotic and postmitotic apoptosis.  相似文献   

17.
Two molecularly distinct G2/M cell cycle arrests are induced after exposure to ionising radiation (IR) depending on the cell cycle compartment in which the cells are irradiated. The aims of this study were to determine whether there are threshold doses for their activation and investigate the molecular pathways and possible links between the G2 to M transition and hyper-radiosensitivity (HRS). Two human glioblastoma cell lines (T98G–HRS+ and U373–HRS?) unsynchronized or enriched in G2 were irradiated and flow cytometry with BrdU or histone H3 phosphorylation analysis used to assess cell cycle progression and a clonogenic assay to measure radiation survival. The involvement of ATM, Wee1 and PARP was studied using chemical inhibitors. We found that cells irradiated in either the G1 or S phase of the cell cycle transiently accumulate in G2 in a dose-dependent manner after exposure to doses as low as 0.2 Gy. Only Wee1 inhibition reduced this G2 accumulation. A block of the G2 to M transition was found after irradiation in G2 but occurs only above a threshold dose, which is cell line dependent, and requires ATM activity after exposure to doses above 0.5 Gy. A failure to activate this early G2/M checkpoint correlates with low dose radiosensitization. These results provide evidence that after exposure to low doses of IR two distinct G2/M checkpoints are activated, each in a dose-dependent manner, with distinct threshold doses and involving different damage signalling pathways and confirm links between the early G2/M checkpoint and hyper-radiosensitivity.  相似文献   

18.
肿瘤坏死因子α和β对电离辐射诱导细胞凋亡的效应   总被引:1,自引:0,他引:1  
为探讨肿瘤坏死因子(tumor necrosis foctor)α和β(TNFα和β)对电离辐射诱发细胞凋亡的效应及其机理,采用DNA琼脂糖凝胶电泳和FACS分析等方法,观察了人肿瘤坏死因子α(hTNFα)和β(hTNFβ)对^60Co-γ射线诱发细胞凋亡的形态学,生化学变化。结果显示:hTNFα或hTNFβ均可明显抑制^60Co-γ射线诱发正常人胚肺二倍体细胞(2BS)的凋亡,而相同剂量的hTNFα能促进^60Co-γ射线诱发的人体肺腺癌细胞系A549细胞凋亡,而对另一株人体肺癌SPC细胞的效应比A549降低1倍;hTNFβ能分别增强A549和SPC的细胞凋亡频率。由此认为,hTNFα和hTNFβ均可通过调节细胞的生理生化反应来改变细胞对电离辐射的敏感性,可保护正常细胞免受辐射损伤,而增加某些肿瘤细胞对辐射的敏感性。  相似文献   

19.
We studied the modulating effect of protein tyrosine kinase inhibitors on the response of cells of the human chronic myelogenous leukemia cell line K562 to radiation. The radiosensitivity of the cells was increased by treatment with herbimycin A and decreased by treatment with genistein. This modulating effect of protein tyrosine kinase inhibitors on radiation sensitivity was associated with the alteration of the mode of radiation-induced cell death. After X irradiation, the cells arrested in the G(2) phase of the cell cycle, but these TP53(-/-) cells were unable to sustain cell cycle arrest. This G(2)-phase checkpoint deficit caused cell death. The morphological pattern of cell death was characterized by swelling of the cytoplasmic compartments, cytosolic vacuolation, disruption of the plasma membrane, less evident nuclear condensation, and faint DNA fragmentation, all of which were consistent with oncosis or cytoplasmic apoptosis. The nonreceptor protein tyrosine kinase inhibitor herbimycin A accelerated the induction of typical apoptosis by X irradiation, which was demonstrated by morphological assessments using nuclear staining and electron microscopy as well as oligonucleosomal fragmentation and caspase 3 activity. Herbimycin A is known to be a selective antagonist of the BCR/ABL kinase of Philadelphia chromosome-positive K562 cells; this kinase blocks the induction of apoptosis after X irradiation. Our results showed that the inhibition of protein tyrosine kinase by herbimycin A enhanced radiation-induced apoptosis in K562 cells. This effect was associated with the activation of caspase 3 and rapid abrogation of the G(2)-phase checkpoint with progression out of G(2) into G(1) phase. In contrast, the receptor-type protein tyrosine kinase inhibitor genistein protected K562 cells from all types of radiation-induced cell death through the inhibition of caspase 3 activity and prolonged maintenance of G(2)-phase arrest. Further investigations using this model may give valuable information about the mechanisms of radiation-induced apoptosis and about the radiosensitivity and radioresistance of chronic myelogenous leukemia cells having the Philadelphia chromosome.  相似文献   

20.
Thoracic ionizing radiation is a standard component of combined-modality therapy for locally advanced non-small cell lung cancer. To improve low 5-year survival rates (5- 15%), new strategies for enhancing the effectiveness of ionizing radiation are needed. The kinase inhibitor UCN-01 has multiple cell cycle effects, including abrogation of DNA damage-induced S- and G(2)-phase arrest, which may limit DNA repair prior to mitosis. To test the hypothesis that therapy-induced cell cycle effects would have an impact on the efficacy of a combination of UCN-01 plus ionizing radiation, the cell cycle responses of the non-small cell lung cancer cell lines Calu1 (TP53-null) and A549 (wild-type TP53) to 2 Gy ionizing radiation were correlated with clonogenic survival after irradiation plus UCN-01. Irradiated cells were exposed to UCN-01 simultaneously and at 3-h increments after irradiation. In Calu1 cells but not A549 cells, sequence-dependent potentiation of radiation by UCN-01 was observed, with maximal interaction occurring when UCN-01 was administered 6 h after irradiation. This coincided with the postirradiation time with the greatest depletion of cells from G(1). Abrogation of G(2) arrest was observed regardless of TP53 status. The role of TP53 was investigated using siRNA to achieve gene silencing. These studies demonstrated that radiation plus UCN-01 was more effective in cells with diminished TP53 activity, associated with a reduced G(1) checkpoint arrest. These studies indicate that simultaneous elimination of multiple DNA damage-induced checkpoints in G(1), S and G(2) may enhance the effects of radiation and that drug scheduling may have an impact on clinical efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号