首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i × j) and three-factor (i k × j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1 × i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1–i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1 × i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1 × i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII+ recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss-branch migration step of the DSB repair pathway and partially deficient in HJ initiation. In apparent contradiction to their effects on the DSB-induced site-specific recombination, the topoisomerase and primase mutants demonstrated about 3–8-fold increase in the recombinant frequencies in the ordinary crosses, with the recombination running exclusively via patches. This implies that most of the spontaneous recombination events are not initiated by dsDNA ends in these mutants.  相似文献   

2.
The role of 3'-5' exonucleases in double-strand break (DSB)-promoted recombination was studied in crosses of bacteriophage T4, in which DSBs were induced site specifically within the rIIB gene by SegC endonuclease in the DNA of only one of the parents. Frequency of rII+ recombinants was measured in two-factor crosses of the type i x ets1, where ets1 designates an insertion in the rIIB gene carrying the cleavage site for SegC and i's are rIIB or rIIA point mutations located at various distances (12-2040 bp) from the ets1 site. The frequency/distance relationship was obtained in crosses of the wild-type phage and dexA1 (deficiency in deoxyribonuclease A), D219A (deficiency in the proofreading exonuclease of DNA polymerase), and tsL42 (antimutator allele of DNA polymerase) mutants. In all the mutants, recombinant frequency in crosses with the i-markers located at 12 and 33 bp from ets1 was significantly enhanced, implying better preservation of 3'-terminal sequences at the ends of the broken DNA. The effects of dexA1 and D219A were additive, suggesting an independent action of the corresponding nucleases in the DSB repair pathway. The recombination enhancement in the dexA1 mutant was limited to short distances (<100 bp from ets1), whereas in the D219A mutant a significant enhancement was seen at all the tested distances. From the character of the frequency/distance relationship, it is inferred that the synthesis-dependent strand-annealing pathway may operate in the D219A mutant. The recombination-enhancing effect of the tsL42 mutation could be explained by the hypothesis that the antimutator 43Exo removes a shorter stretch of paired nucleotides than the wild-type enzyme does during hydrolysis of the unpaired terminus in the D-loop intermediate. The role of the proofreading exonuclease in the formation of a robust replicative fork is discussed.  相似文献   

3.
Coordination of DNA ends during double-strand break (DSB) repair was studied in crosses of bacteriophage T4 in which DSBs were induced site-specifically by SegC endonuclease in the DNA of only one of the parents. Coupling of the genetic exchanges to the left and to the right of the DSB was measured in the wild-type genetic background as well as in T4 strains bearing mutations in several recombination genes: 47, uvsX, uvsW, 59, 39 and 61. The observed quantitative correlation between the degree of coupling and position of the recombining markers in relation to the DSB point implies that the two variants of the splice/patch-coupling (SPC) pathway, the "sequential SPC" and the "SPC with fork collision", operate during DSB repair. In the 47 mutant with or without a das suppressor, coupling of the exchanges was greatly reduced, indicating a crucial role of the 47/46 complex in coupling of the genetic exchanges on the two sides of the DSB. From the observed dependence of the apparent coupling on the intracellular ratio of breakable and unbreakable chromosomes in different genetic backgrounds it is inferred that linking of the DNA ends by 47/46 protein is the mechanism that accounts for their concerted action during DSB repair. A mechanism of replicative resolution of D-loop intermediate (RR pathway) is suggested to explain the phenomenology of DSB repair in DNA arrest and uvsW mutants. A "left"-"right" bias in the recombinogenic action of two DNA ends of the broken chromosome was observed which was particularly prominent in the 59 (41-helicase loader) and 39 (topoisomerase) mutants. Phage topoisomerase II (gp39-52-60) is indispensable for growth in the DNA arrest mutants: the doubles 47(-)39(-), uvsX 39(-) and 59(-)39(-) are lethal.  相似文献   

4.
The effects of mutations in bacteriophage T4 genes uvsX and 49 on the double-strand break (DSB)-promoted recombination were studied in crosses, in which DSBs were induced site-specifically within the rIIB gene by SegC endonuclease in the DNA of only one of the parents. Frequency of rII+ recombinants was measured in two-factor crosses of the type i×ets1 and in three-factor crosses of the type i×ets1 a6, where ets1 is an insertion in the rIIB gene carrying the cleavage site for SegC; i's are rIIB or rIIA point mutations located at various distances (12-2040 bp) from the ets1 site, and a6 is rIIA point mutation located at 2040 bp from ets1. The frequency/distance relationships were obtained in crosses of the wild-type phage and of the amber mutant S17 (gene uvsX) and the double mutant S17 E727 (genes uvsX and 49). These data provide information about the frequency and distance distribution of the single-exchange (splices) and double-exchange (patches) events. The extended variant of the splice/patch coupling (SPC) model of recombination, which includes transition to the replication resolution (RR) alternative is substantiated and used for interpretation of the frequency/distance relationships. We conclude that the uvsX mutant executes recombination-dependent replication but does it by a qualitatively different way. In the absence of UvsX function, the DSB repair runs largely through the RR subpathway because of inability of the mutant to form a Holliday junction. In the two-factor crosses, the double uvsX 49- is recombinationally more proficient than the single uvsX mutant (partial suppression of the uvsX deficiency), while the patch-related double exchanges are virtually eliminated in this background.  相似文献   

5.
In this study, we analyzed double-strand break (DSB) repair in Arabidopsis (Arabidopsis thaliana) at various developmental stages. To analyze DSB repair, we used a homologous recombination (HR) and point mutation reversion assays based on nonfunctional beta-glucuronidase reporter genes. Activation of the reporter gene through HR or point mutation reversion resulted in the appearance of blue sectors after histochemical staining. Scoring of these sectors at 3-d intervals from 2 to 31 d post germination (dpg) revealed that, although there was a 100-fold increase in the number of genomes per plant, the recombination frequency only increased 30-fold. This translates to a recombination rate at 31 dpg (2.77 x 10(-8)) being only 30% of the recombination rate at 2 dpg (9.14 x 10(-8)). Conversely, the mutation frequency increased nearly 180-fold, resulting in a 1.8-fold increase in mutation rate from 2 to 31 dpg. Additional analysis of DSBs over the early developmental stages revealed a substantial increase in the number of strand breaks per unit of DNA. Furthermore, RNA analysis of Ku70 and Rad51, two key enzymes in two different DSB repair pathways, and further protein analysis of Ku70 revealed an increase in Ku70 levels and a decrease of Rad51 levels in the developing plants. These data suggest that DSB repair mechanisms are developmentally regulated in Arabidopsis, whereby the proportion of breaks repaired via HR substantially decreases as the plants mature.  相似文献   

6.
A method for in vivo studying the fidelity of DNA double-strand break (DSB) repair in bacteriophage T4 has been developed. The frequency of reversion of rII mutations to the wild phenotype was measured in i segC+ x i ets 1 segCDelta crosses, where ets 1 is an insertion in the initial part of the rII gene carrying a sequence recognized by SegC endonuclease; i designates a rIIB or rIIA mutation located at some distance from ets 1, and segCDelta is a deletion in the segC gene. In such cross, a DSB occurs in the site of ets 1. Their repair involves genetic recombination and DNA replication in the neighborhood of ets 1. In parallel, the frequency of reversion of the same i mutant in the absence of DSBs is measured in i x i self-crosses. Reversions of different types (base substitutions, deletions, insertions) can be studied with the use of structurally different i mutations located at varying distances from ets 1. The reversion frequencies were determined for three rIIB mutations and one rIIA mutation. The results obtained suggest that DSB repair in bacteriophage T4 is a process of high fidelity with the rate of errors that does not essentially exceed that in the case of usual phage multiplication.  相似文献   

7.
A method for in vivo studying the fidelity of DNA double-strand break (DSB) repair in bacteriophage T4 has been developed. The frequency of reversion of rII mutations to the wild phenotype was measured in i segC + × i ets1 segCΔ crosses, where ets1 is an insertion in the initial part of the rIB gene carrying a sequence recognized by SegC endonuclease; i designates a rIIB or rIIA mutation located at some distance from ets1, and segCΔ is a deletion in the segC gene. In such cross, a DSB occurs in the site of ets1. Their repair involves genetic recombination and DNA replication in the neighborhood of ets1. In parallel, the frequency of reversion of the same i mutant in the absence of DSBs is measured in i × i self-crosses. Reversions of different types (base substitutions, deletions, insertions) can be studied with the use of structurally different i mutations located at varying distances from ets1. The reversion frequencies were determined for three rIIB mutations and one rIIA mutation. The results obtained suggest that DSB repair in bacteriophage T4 is a process of high fidelity with the rate of errors that does not essentially exceed that in the case of usual phage multiplication.  相似文献   

8.
9.
Double-strand break repair in Ku86- and XRCC4-deficient cells.   总被引:24,自引:10,他引:14       下载免费PDF全文
The Ku86 and XRCC4 proteins perform critical but poorly understood functions in the repair of DNA double-strand breaks. Both Ku 86- and XRCC4-deficient cells exhibit profound radiosensitivity and severe defects in V(D)J recombination, including excessive deletions at recombinant junctions. Previous workers have suggested that these phenomena may reflect defects in joining of the broken DNA ends or in protection of the ends from nucleases. However, end joining in XRCC4-deficient cells has not been examined. Here we show that joining of both matched and mismatched DNA ends occurs efficiently in XRCC4-deficient cells. Furthermore, analysis of junctions shows that XRCC4 is not required to protect the ends from degradation. However, nucleotide sequence analysis of junctions derived from joining of mismatched DNA ends in XRCC4-deficient cells revealed a strong preference for a junction containing a 7 nt homology. Similar results were obtained in Ku86-deficient cells. These data suggest that in the absence of XRCC4 or Ku86, joining is assisted by base pairing interactions, supporting the hypothesis that these proteins may participate in aligning or stabilizing intermediates in end joining.  相似文献   

10.
Trinucleotide repeats undergo contractions and expansions in humans, leading in some cases to fatal neurological disorders. The mechanism responsible for these large size variations is unknown, but replication-slippage events are often suggested as a possible source of instability. We constructed a genetic screen that allowed us to detect spontaneous expansions/contractions of a short trinucleotide repeat in yeast. We show that deletion of RAD27, a gene involved in the processing of Okazaki fragments, increases the frequency of contractions tenfold. Repair of a chromosomal double-strand break (DSB) using a trinucleotide repeat-containing template induces rearrangements of the repeat with a frequency 60 times higher than the natural rate of instability of the same repeat. Our data suggest that both gene conversion and single-strand annealing are major sources of trinucleotide repeat rearrangements. Received: 8 January 1999 / Accepted: 17 March 1999  相似文献   

11.
The precision of the repair of linearized plasmid DNA was analyzed using a nonsense mutation inactivated beta-glucuronidase (uidA) marker gene delivered to Nicotiana plumbaginifolia protoplasts and Nicotiana tabacum leaves. The reversions at the stop-codon allowed the reactivation of the marker gene. Here we report that irradiation of plant protoplasts or plant tissue prior to the delivery of the DNA repair substrate significantly potentiated the reversion frequency leading to a two to fourfold increase over the non-irradiated samples. The increase in reversion frequency was highest upon the delivery of the linear substrates, suggesting increased sensitivity of the double-strand break (DSB) repair apparatus to UV-C. Moreover, the most significant UV irradiation effect was observed in plasmids linearized in close proximity to the stop codon. The higher reversion frequency in UV-treated samples was apparently due to the involvement of free radicals as pretreatment of irradiated tissue with radical scavenging enzyme N-acetyl-l-cysteine abolished the effect of UV-C. We discuss the UV-sensitivity of various repair enzymes as well as possible mechanisms of involvement of error-prone polymerases in processing of DSBs.  相似文献   

12.
Stohr BA  Kreuzer KN 《Genetics》2002,162(3):1019-1030
The extensive chromosome replication (ECR) model of double-strand-break repair (DSBR) proposes that each end of a double-strand break (DSB) is repaired independently by initiating extensive semiconservative DNA replication after strand invasion into homologous template DNA. In contrast, several other DSBR models propose that the two ends of a break are repaired in a coordinated manner using a single repair template with only limited DNA synthesis. We have developed plasmid and chromosomal recombinational repair assays to assess coordination of the broken ends during DSBR in bacteriophage T4. Results from the plasmid assay demonstrate that the two ends of a DSB can be repaired independently using homologous regions on two different plasmids and that extensive replication is triggered in the process. These findings are consistent with the ECR model of DSBR. However, results from the chromosomal assay imply that the two ends of a DSB utilize the same homologous repair template even when many potential templates are present, suggesting coordination of the broken ends during chromosomal repair. This result is consistent with several coordinated models of DSBR, including a modified version of the ECR model.  相似文献   

13.
The replication of plasmids containing fragments of the T4 genome, but no phage replication origins, was analyzed as a possible model for phage secondary (recombination-dependent) replication initiation. The replication of such plasmids after T4 infection was reduced or eliminated by mutations in several phage genes (uvsY, uvsX, 46, 59, 39, and 52) that have previously been shown to be involved in secondary initiation. A series of plasmids that collectively contain about 60 kilobase pairs of the T4 genome were tested for replication after T4 infection. With the exception of those known to contain tertiary origins, every plasmid replicated in a uvsY-dependent fashion. Thus, there is no apparent requirement for an extensive nucleotide sequence in the uvsY-dependent plasmid replication. However, homology with the phage genome is required since the plasmid vector alone did not replicate after phage infection. The products of plasmid replication included long concatemeric molecules with as many as 35 tandem copies of plasmid sequence. The production of concatemers indicates that plasmid replication is an active process and not simply the result of passive replication after the integration of plasmids into the phage genome. We conclude that plasmids with homology to the T4 genome utilize the secondary initiation mechanism of the phage. This simple model system should be useful in elucidating the molecular mechanism of recombination-dependent DNA synthesis in phage T4.  相似文献   

14.
In all living organisms, the response to double-strand breaks (DSBs) is critical for the maintenance of chromosome integrity. Homologous recombination (HR), which utilizes a homologous template to prime DNA synthesis and to restore genetic information lost at the DNA break site, is a complex multistep response. In Bacillus subtilis, this response can be subdivided into five general acts: (1) recognition of the break site(s) and formation of a repair center (RC), which enables cells to commit to HR; (2) end-processing of the broken end(s) by different avenues to generate a 3'-tailed duplex and RecN-mediated DSB 'coordination'; (3) loading of RecA onto single-strand DNA at the RecN-induced RC and concomitant DNA strand exchange; (4) branch migration and resolution, or dissolution, of the recombination intermediates, and replication restart, followed by (5) disassembly of the recombination apparatus formed at the dynamic RC and segregation of sister chromosomes. When HR is impaired or an intact homologous template is not available, error-prone nonhomologous end-joining directly rejoins the two broken ends by ligation. In this review, we examine the functions that are known to contribute to DNA DSB repair in B. subtilis, and compare their properties with those of other bacterial phyla.  相似文献   

15.
The process of phage T4 DNA injection into the host cell was studied under a fluorescent microscope, using 4',6-diamidino-2-phenylindole as a DNA-specific fluorochrome. The phage DNA injection was observed when spheroplasts were infected with the artificially contracted phage particles having a protruding core. The DNA injection was mediated by the interaction of the core tip with the cytoplasmic membrane of the spheroplast. A membrane potential was not required for the process of DNA injection. On the other hand, DNA injection upon infection by intact noncontracted phage of the intact host cell was inhibited by an energy poison. Based on these observations, together with results from previous work, a model for the T4 infection process is presented, and the role of the membrane potential in the infection process is discussed.  相似文献   

16.
Involvement of bacteriophage T4 genes in radiation repair   总被引:9,自引:0,他引:9  
One interpretation of Ebisuzaki's (1966) observation that the functional survival of certain early phage T4 genes is identical in v+ and v -infected cells is that the product of the early gene being studied is essential for the successful completion of excision repair (which is known to be mediated by the v gene). An experiment designed to test this hypothesis is described, with results which fully support the idea. Assuming then that this interpretation is valid, it became possible to determine the involvement in excision repair of a much wider range of early genes by establishing whether or not the v allele affects their functional survival. In addition a comparable series of experiments was performed with phages carrying the u.v.-sensitive y mutation which is known to mediate a quite different type of repair in T4-infected cells.The results indicate that genes 1, 30, 42, 43 and 56 are involved in excision repair, but not genes 32, 41, 43 or 44. All these genes are however involved in y-mediated repair. It appears therefore that this latter repair system (which bears some resemblance to that controlled by the rec genes in bacteria) depends on normal phage DNA synthesis for its completion. However the repair synthesis following the excision of pyrimidine dimers in u.v.-irradiated T4 DNA seems distinct from normal DNA synthesis in that it does not involve certain of the early phage genes, and in particular does not utilize the DNA polymerase coded by gene 43. It is suggested that the polymerase activity associated with this repair synthesis is provided by the bacterial Kornberg polymerase pol I.  相似文献   

17.
Holmes AM  Haber JE 《Cell》1999,96(3):415-424
Mitotic double-strand break (DSB)-induced gene conversion at MAT in Saccharomyces cerevisiae was analyzed molecularly in mutant strains thermosensitive for essential replication factors. The processivity cofactors PCNA and RFC are essential even to synthesize as little as 30 nucleotides following strand invasion. Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta. Surprisingly, mutants of lagging strand replication, DNA polymerase alpha (pol1-17), DNA primase (pri2-1), and Rad27p (rad27 delta) also greatly inhibit completion of DSB repair, even in G1-arrested cells. We propose a novel model for DSB-induced gene conversion in which a strand invasion creates a modified replication fork, involving leading and lagging strand synthesis from the donor template. Replication is terminated by capture of the second end of the DSB.  相似文献   

18.
Bacteriophage T4 has an efficient mechanism for injecting the host Escherichiacoli cell with genomic DNA. Its gene product 5 (gp5) has a needle-like structure attached to the end of a tube through which the DNA passes on its way out of the head and into the host. The gp5 needle punctures the outer cell membrane and then digests the peptidoglycan cell wall in the periplasmic space. gp5 is normally post-translationally cleaved between residues 351 and 352. The function of this process in controlling the lysozyme activity of gp5 has now been investigated. When gp5 is over-expressed in E.coli, two mutants (S351H and S351A) showed a reduction of cleavage products and five other mutants (S351L, S351K, S351Y, S351Q, and S351T) showed no cleavage. Furthermore, in a complementation assay at 20 degrees C, the mutants that had no cleavage of gp5 produced a reduced number of plaques compared to wild-type T4. The crystal structure of the non-cleavage phenotype mutant of gp5, S351L, complexed with gene product 27, showed that the 18 residues in the vicinity of the potential cleavage site (disordered in the wild-type structure) had visible electron density. The polypeptide around the potential cleavage site is exposed, thus allowing access for an E.coli protease. The lysozyme activity is inhibited in the wild-type structure by a loop from the adjacent gp5 monomer that binds into the substrate-binding site. The same inhibition is apparent in the mutant structure, showing that the lysozyme is inhibited before gp5 is cleaved and, presumably, the lysozyme is activated only after gp5 has penetrated the outer membrane.  相似文献   

19.
The lytic bacteriophage T4 uses multiple mechanisms to initiate the replication of its DNA. Initiation occurs predominantly at replication origins at early times of infection, but there is a switch to genetic recombination-dependent initiation at late times of infection. The T4 insertion-substitution system was used to create a deletion in the T4 dda gene, which encodes a 5'-3' DNA helicase that stimulates both DNA replication and recombination reactions in vitro. The deletion caused a delay in T4 DNA synthesis at early times of infection, suggesting that the Dda protein is involved in the initiation of origin-dependent DNA synthesis. However, DNA synthesis eventually reached nearly wild-type levels, and the final number of phages produced per bacterium was similar to that of the wild type. When the dda mutant phage also contained a mutation in T4 gene 59 (a gene normally required only for recombination-dependent DNA replication), essentially no DNA was synthesized. Recent in vitro studies have shown that the gene 59 protein loads a component of the primosome, the T4 gene 41 DNA helicase, onto DNA. A molecular model for replication initiation is presented that is based on our genetic data.  相似文献   

20.
The location of the non-essential T4 mutant uvs79, with defective replication repair, is described. After crosses with double mutants dispersed over the early region of T4, a linkage was observed with the double mutant am41 : am42. For more accurate location, crosses were made with single mutants. Uvs79 proved to be located between mutants amC23 and amN81 in gene 41, as shown by 3-point crosses. No genetic complementation with respect to multiplicity reactivation was found between amN81 and uvs79 after a co-infection of an su? host. Apparently, mutant amN81 is disturbed as to replication repair and, owing to its lack of DNA synthesis, also in replication-dependent recombination repair. Consequently, the product of gene 41 has a function additional to its RNA-primer induction during replication of undamaged DNA. Presumably, the product of gene 41 induces RNA primers opposite DNA regions containing lesions. This capability is believed to be specifically affected by the uvs79 mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号