首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purified preparations of Rous sarcoma virus (RSV) contain ribonuclease which is either a constituent of the virion surface or an adsorbed contaminant. Treatment of the virus with nonionic detergent to activate ribonucleic acid (RNA)-dependent deoxyribonucleic acid (DNA) polymerase renders the viral genome susceptible to hydrolysis by the external ribonuclease. The extent of this susceptibility can be substantially reduced by the use of limited amounts of detergent. At a concentration of detergent which provides a maximum initial rate of DNA synthesis, the degradation of endogenous viral RNA results in a reduced yield of high molecular weight DNA: RNA hybrid from the polymerase reaction. Attempts to detect virion-associated deoxyribonuclease, by using a variety of double helical DNA species as substrates, have been unsuccessful, but small amounts of nuclease activity directed against single-stranded DNA may be present in purified virus.  相似文献   

2.
Lpase from Mucor miehei was immobilized onto partially hydrolyzed poly(ethylene)-g.co-hydroxyethyl methacrylate (PE/HEMA) via spacer arms of 1,6-diaminohexane and glutaraldehyde-. The PE/HEMA-lipase system was used for the enzymatic esterification of n-octanol with oleic acid in the absence of organic solvents. The influence of lipase' concentration, in the attachment solution, on the ester production profile and initial reaction rate was studied. It was found that very small amounts of lipase gave preparations which reached good degrees of conversion. The effect of the initial oleic acid concentration on that pseudo-first order reaction, as well as the presence of water in the reactional medium and the influence of temperature were evaluated. It was found that initial oleic acid concentrations lesser than 1.2 M did not inhibit the immobilized lipase activity; the presence of small amount of water (10–30μ) solubilized in the reaction mixture (6.5 cm3) increased the lipase activity and a maximum of activity of the immobilized lipase preparation was found at 55d`C. The operational stability of the preparation was determined at 37d`C in a BSTR type reactor and a half-life time of three days for the immobilized lipase was obtained.  相似文献   

3.
The esterification reaction of geraniol with acetic acid catalyzed by immobilized Candida antarctica lipase B was studied in hexane using a pervaporation-assisted batch reactor. The effect of thermodynamic water activity (a(w)) on the initial reaction rate was investigated at a(w) ranging from 0.02 to 1.0. The a(w) was monitored on-line in real time. a(w) was actively controlled throughout the reaction by using highly water-selective membrane pervaporation. This novel combination of a(w) sensing and control eliminates changes in a(w) during the reaction even in the initial phase of relatively rapid water release during an esterification. No chemicals are introduced for a(w) control, and no purge gases or liquids are needed. A maximum in the initial reaction rate was found approximately at a(w)=0.1. The initial reaction rate declined quickly at higher a(w), and dropped precipitously at lower a(w).  相似文献   

4.
A complete initial rate analysis of the forward reaction catalyzed by 15-hydroxyprostaglandin dehydrogenase from human term placenta was carried out at pH 7.4 (100mM triethanolamine) with the substrates NAD, and the prostaglandins E1, E2 and F2alpha. The limiting Michaelis constants, the dissociation constants, and the limiting maximum velocities for these substrates were calculated by fitting the obtained data by weighted linear regression analysis to the complete rate equation. The product inhibition of the reaction by NADH and 15-oxoprostaglandin was studied and the inhibition constants were graphically determined. The initial rate and inhibition patterns obtained indicate that the reaction follows kinetically an ordered Bi Bi mechanism. The prostaglandin F2alpha analogues ICI 81,008 and ICI 79,939 were not utilized by the enzyme. With ICI 81,008 a slight inhibition of the enzymatic reaction with prostaglandin F2alpha was observed, whereas ICI 79,939 showed no effect. The results are discussed with respect to their possible biological significance.  相似文献   

5.
An analysis of the hydroxamic acid oxidation reaction by H2O2 and horseradish peroxidase (HRP) was made with three pairs of hydroxamic acids. Each pair consisted of the aceto- and glycolhydroxamic acid derivatives from one of three different arylhydroxylamines. The parent arylhydroxylamines were the known carcinogens, N-hydroxy-2-aminofluorene and N-hydroxy-4-aminobiphenyl and the noncarcinogen 4-chlorophenyl-hydroxylamine. All the hydroxamic acids appeared to be converted to products that were expected on the basis of the previously-proposed mechanism of this peroxidative reaction. Each acetohydroxamic acid gave the corresponding nitroso compound and O-acetyl ester of the starting material in approximately equal amounts. The glycolhydroxamic acids gave the corresponding nitroso compound and a relatively unstable product that was proposed, by analogy, to be the O-glycolyl ester of the starting material. A comparison of the initial rates of reaction of each hydroxamic acid pair showed that the glycolhydroxamic acid was much more susceptible to the peroxidation reaction than was the corresponding acetohydroxamic acid. The initial rate of the reaction was also highly dependent upon the nature of the aromatic ring in the order fluorene greater than biphenyl greater than 4-chlorophenyl. The relative degree of HRP-catalyzed covalent binding to DNA of the aceto- and glycolhydroxamic acids in the fluorene series was studied and found to parallel the relative rates of reaction of these substrates in the H2O2/HRP system. It was proposed that glycolhydroxamic acids are likely to be more genotoxic than are acetohydroxamic acids when subjected to peroxidative bioactivation conditions.  相似文献   

6.
N-(Benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-AspPheOMe), a precursor of the aspartame, and N-(benzyloxycarbonyl)-L-phenylalanyl-Lphenylalanine methyl ester (Z-PhePheOMe) were synthesized from the respective amino acid derivatives with an immobilized thermolysin (EC 3.4.24.4) in ethyl acetate. Various factors affecting the synthesis of these dipeptide precursors were clarified. The initial synthetic rate was the highest at the water content of 3.5% for both reactions. The substrate concentration dependencies of the initial synthetic rate of Z-AspkPheOMe and Z-PhePheOMe with the immobilized enzyme in ethyl acetate were different from those in an aqueous buffer solution saturated with ethyl acetate but similar to those in the aqueous/organic biphasic system using the free enzyme. Particularly, the initial synthetic rate of Z-AspPhOMe increased in order higher than first order with respect to the concentration of L-phenylalanine methyl ester (PheOMe), whereas it decreased sharply with the concentration of N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp). Such kinetic behavior could be explained by regarding the inside of the immobilized enzyme as being a biphasic mode composed from the organic phase and aqueous phase where the enzymatic reaction takes place. The reaction in the aqueous/organic biphasic system using the free enzyme could be simulated by taking into consideration the partition of the substrate and the initial rate of synthesis in the aqueous buffer saturated with ethyl acetate. Based on this analysis, the rate of reaction with the immobilized enzyme in ethyl acetate could also be predicted. Z-AsPheOMe and Z-PhePheOMe were synthesized by the fed-batch method where the acid component of the substrate was intermittently added during the course of reaction and by the batch method. In the synthesis of Z-AspPheOMe, the synthetic rate and maximum yield of reaction as well as the stability of the immobilized enzyme were higher in the fed-batch reaction than those in the batch reaction. In the synthesis of Z-PhePheOMe, the results obtained by both methods were similar. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
Candida bombicola was grown using a variety of lipophilic carbon substrates. Most of the hydrocarbon and carboxylic acid substrates resulted in a mixture of sophorolipids consisting of free acids and the more desirable lactones. The ratio of diacylated lactone to free acid in these mixtures was a maximum when produced using hexadecane and heptadecane. All of the other lipophilic substrates resulted in significant amounts of free acids being produced. These lactone products were unique in that they precipitated as crystals, which were easily separated from the culture medium. All of the other products were isolated as oils as is usually reported in the literature. Finally, the amounts of these crystals recovered were significantly higher than those observed for any of the oily products. It was possible to determine the degree of direct incorporation of the lipophilic substrates into the sophorolipids for a homologous series of alkanes. The amount of direct incorporation increased with increasing chain length to a maximum for pentadecane, hexadecane and heptadecane. As the length of the alkane substrate increased further, the amount of direct incorporation then decreased until there was no apparent incorporation for eicosane.  相似文献   

8.
Lipase-catalyzed synthesis of fatty acid sugar esters through direct esterification was performed in 2-methyl 2-butanol as solvent. Fructose and saturated fatty acids were used as substrates and the reaction was catalyzed by immobilized Candida antarctica lipase. The effect of the initial fructose/acyl donor molar ratio and the carbon-chain length of the acyl donor as well as their reciprocal interactions on the reaction performance were investigated. For this purpose, an experimental design taking into account variations of the molar ratio (from 1:1 to 1:5) and the carbon-chain length of the fatty acid (from C8 to C18) was employed. Statistical analysis of the data indicated that the two factors as well as their interactions had significant effects on the sugar esters synthesis. The obtained results showed that whatever the molar ratio used, the highest concentration (73 g l−1), fructose and fatty acid conversion yields (100% and 80%, respectively) and initial reaction rate (40 g l−1 h−1) were reached when using the C18 fatty acid as acyl donor. Low molar ratios gave the best fatty acid conversion yields and initial reaction rates, whereas the best total sugar ester concentrations and fructose conversion yields were obtained for high molar ratios.  相似文献   

9.
Enzymatic synthesis of the aspartame precursor, N -(benzyloxycarbonyl)- l -aspartyl- l -phenylalanine methyl ester (Z-AspPheOMe) was performed with highly concentrated molten substrates. A mixture composed of molten N -(benzyloxycarbonyl)- l -aspartic acid (Z-Asp) and l -phenylalanine methyl ester (PheOMe) mixtures of 20 M could be prepared at 50°C. This Z-Asp/PheOMe mixture was applied to the enzymatic synthesis of Z-AspPheOMe using free thermolysin. Synthesis of Z-AspPheOMe was observed in the range of 100-150 &#119 l of NaOH solution (12.5 M) addition to a reaction mixture consisting of 1.0 mmol Z-Asp and 1.0 mmol PheOMe at 50°C. The enzymatic activity increased with increasing water addition, and reached a maximum at 100 &#119 l in addition to the reaction mixture of 1.0 mmol Z-Asp, 1.0 mmol PheOMe and 125 &#119 l of the NaOH solution. In this reaction system, the conversion at the reaction equilibrium was about 60%, the initial reaction rate calculated on the basis of the enzyme weight was 2.2 &#119 mol/g s, and the productivity calculated on the basis of the reaction mixture volume was 300 mol/m 3 h.  相似文献   

10.
An HPLC assay for farnesyl-protein transferase activity using a dabsylated peptide is described. The substrates used were a synthetic dabsylated nonapeptide, N-dabsyl-l-serinyl-l-methioninyl-l-glycinyl-l-leucinyl-l-prolinyl-l-cysteinyl-l-valinyl-l-valinyl-l-methionine, corresponding to the C-terminal peptide seqeunce of human N-Ras p21 without the N-terminal serine, and farnesyl disphosphate. The product was separated from the substrates on a reversed-phase C18 column, using gradient elution with acetonitrile (0.05% trifluoroacetic acid)-water (0.1% trifluoroacetic acid) and was detected at 436 nm. The addition of the farnesyl group to the peptide was confirmed by MS and NMR. Enzymatic reaction was ascertained from the dependences on time, on the protein of the enzyme source and on the substrates. The reaction was specifically inhibited by l-cysteinyl-l-valinyl-l-valinyl-l-methionine, the tetrapeptide corresponding to the “CAAX” motif. The limit of detection was 2 pmol per 100-μl reaction mixture. The farnesyl-protein transferase activity can quantitatively be measured up to 200 μg cytosolic protein in human liver. This method provides a convenient and quantitative assay for crude materials, such as tissue homogenate from clinical samples, without the use of radioactive probes and large amounts of Ras protein.  相似文献   

11.
In this study, diluted and fortified carrot juice was used for modelling and optimization of citric acid production by a new mutant strain, Yarrowia lipolytica K-168. Protein concentrate obtained from fine flour -a byproduct of semolina production- was used as a nitrogen source in the fermentation medium. Interactive effects of selected independent variables, initial total sugar concentration, initial pH, initial concentration of protein concentrate obtained from fine flour of semolina and temperature, on the growth and citric acid production of the yeast were investigated. An experimental design including 30 experiments was conducted by using the method of central composite design. Modelling the effects of these independent variables on maximum citric acid concentration, maximum citric acid production rate, citric acid yield, the ratio of maximum citric acid concentration to maximum isocitric acid concentration and specific growth rate were performed by response surface methodology. The variations of all of the responses with the independent variables were defined by a quadratic model. Numeric optimization was performed by using the desireability function. The conditions with 190.83 g/L initial sugar concentration, 5.90 initial pH, 0.07 g/L initial concentration of fine flour protein concentrate and 27.86 °C were determined as optimal conditions for citric acid production. The maximum citric acid concentration reached to 80.53 g/L in optimal conditions.  相似文献   

12.
J A Adams  S S Taylor 《Biochemistry》1992,31(36):8516-8522
Viscosogenic agents were used to test the diffusion limits of the reaction catalyzed by the catalytic subunit of the cAMP-dependent protein kinase. The effects of glycerol and sucrose on the maximum rate (kcat) and the apparent second-order rate constants (kcat/Kpeptide) for the phosphorylation of four peptidic substrates were measured at their pH optima. The agents were found to have moderate to no effect on kcat/Kpeptide for good and poor substrates, respectively. Conversely, kcat was highly sensitive to solvent viscosity for three of the four peptides at high concentrations of ATP. Taken together, these data indicate that enzymatic phosphorylation by the catalytic subunit proceeds with rapid or near rapid equilibrium binding of substrates and that all steps following the central substrate complex (i.e., chemical and conformational events) are fast relative to the rate-determining dissociation of product, ADP, when ATP levels are high. Under saturating concentrations of peptide I, LRRASLG, an unproductive form of the enzyme is populated. The observed phosphorylation rate from this complex is involved in rate limitation owing to a slow step separating unproductive and productive enzyme forms. The data are used to establish a kinetic mechanism for the catalytic subunit that predicts initial reaction velocities under varying concentrations of ATP and substrate.  相似文献   

13.
Arachidonate 12-lipoxygenase was purified to near homogeneity from the cytosol fraction of porcine leukocytes by ammonium sulfate fractionation, DEAE-cellulose chromatography, and immunoaffinity chromatography using a monoclonal antibody against the enzyme. The purified enzyme was unstable (half-life of about 24 h at 4 degrees C) but was markedly protected from the inactivation by storage in the presence of ferrous ion or in the absence of air. The lag phase which was observed before the start of the enzyme reaction was abolished by the presence of 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid. An apparent substrate inhibition was observed with arachidonic acid and other active substrates; however, the substrate concentration curve was normalized by the presence of 0.03% Tween 20. Arachidonic acid was transformed to the omega-9 oxygenation product 12-hydroperoxy-5Z,8Z,10Z,14Z-eicosatetraenoic acid. C-12 oxygenation also occurred with 5-hydroxy- and 5-hydroperoxyeicosatetraenoic acids; the respective maximal velocities were 60 and 150% of the rate with arachidonic acid. Octadecaenoic acids were also good substrates. gamma-Linolenic acid was oxygenated in the omega-9 position (C-10), while linoleic and alpha-linolenic acids were subject to omega-6 oxygenation (C-13). A far more complex reaction was observed using 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid as substrate. Reaction occurred at 70% of the rate with arachidonic acid. The dihydroperoxy and dihydroxy products were identified by their UV absorption spectra, high performance liquid chromatography, and gas chromatography-mass spectrometry. Among these products, (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicos atetraenoic acid and (14R,15S)-erythro-dihydroperoxy-5Z,8Z,10E, 12E-eicosatetraenoic acid were produced in larger amounts than the (8R)- and (14S,15S)-threo isomers, respectively; these products were attributed to 8- and 14-oxygenation of the 15-hydroperoxy acid. Furthermore, formation of 14,15-leukotriene A4 was inferred from the characteristic pattern of its hydrolysis products comprised of equal amounts of (8R,15S)- and (8S,15S)-dihydroxy-5Z,9E,11E,13E-eicosatetraenoi c acids together with smaller amounts of (14R,15S)-erythro- and (14S,15S)-threo-dihydroxy-5Z,8Z,10E,12E-eicosate traenoic acids. Thus, both lipoxygenase and leukotriene synthase activities were demonstrated with the homogeneous preparation of porcine leukocyte 12-lipoxygenase.  相似文献   

14.
Enzymatic synthesis of esters using an immobilized lipase   总被引:6,自引:0,他引:6  
Various esters were synthesized in nearly anhydrous hexane from alcohols and carboxylic acids using a lipase from Candida cylindracea. The enzyme was immobilized on a nylon support and protein loadings as high as 10 mg/g were obtained. The activity of the immobilized enzyme was maximum in a range of temperatures from 25 to 37 degrees C. Ethylpropionate was formed from ethanol and propionic acid at a rate of 0.017 mol/h g immobilized protein. Different esters were formed at comparable rates and equilibrium conversions could generally be approached in less than 10 h in a batch reaction system. The immobilized lipase catalyst was quite stable and retained about one third of the initial activity after repeated experiments during the course of 72 days. A stirred tank continuous flow reactor was used successfully for the continuous production of esters.  相似文献   

15.
The kinetics of a multisubstrate enzymatic reaction catalyzed by prostaglandin H synthase (PGH-synthase, EC 1.14.99.1) was studied, using homovanillic acid, a new electron donor for the given system. Homovanillic acid was shown to be a participant in a reaction with arachidonic acid/O2 stoichiometric ratios and is oxidized to a readily fluorescing product with an absorbance maximum (excitation) at 315 nm and fluorescence maximum at 425 nm. This allows for determination of the rate of enzymatic reaction with the sensitivity exceeding by one order of magnitude that of polarographic or spectrophotometric assays. Using fluorescent techniques, the dependence of the rate of PGH-synthase reaction on substrate (arachidonic acid, O2 and homovanillic acid) concentrations was studied, and the corresponding Km values were determined. The effect of Tween-20 and Lubrol PX concentrations on the reaction rate were examined. It was shown that with a decrease in the surfactant concentration the reaction rate increases.  相似文献   

16.
A mechanism for transforming sinapic acid by a polyphenoloxidase from Trametes versicolor was investigated using changes in sinapic acid and oxygen concentrations during the reaction. The experiments were performed in a closed system without supplemental oxygen. The effects of temperature and initial oxygen concentration on the reaction rates were examined. To compare the obtained results with those from spectrophotometric studies, some runs were performed using an open system with supplemental oxygen. Sinapic acid transformation can be described by the Theorell-Chance Bi-Bi or Ordered Bi-Bi mechanisms. This reacting system consisted also of additional enzymatic reactions between the products of sinapic acid transformation and oxygen. A mathematical model was developed using four ordinary differential equations that represent the Theorell-Chance Bi-Bi mechanism with three alternate substrates. Model parameters (i.e., rate constants) were determined using the data collected at three different temperatures. On the basis of the transition state theory, relationships between these constants and temperature were established. It is shown that, in the open system, the observed change in the enzyme activity at higher temperatures was caused by two opposing phenomena: an Arrhenius effect which increased the rate, and a solubility effect which reduced the rate due to a lower oxygen concentration. This finding allows us to recommend better conditions for spectrophotometric methods, the assay most commonly used to evaluate this and similar enzymes. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
The mechanism of the formation of 4-hydroxynonenal through the NADPH-linked microsomal lipid peroxidation was investigated. The results were as follows: 4-hydroxynonenal arises exclusively from arachidonic acid contained in the polar phospholipids, neither arachidonic acid of the neutral lipids nor linoleic acid of the polar or neutral lipids are substrates for 4-hydroxynonenal generation. This finding results from the estimation of the specific radioactivity of 4-hydroxynonenal produced by microsomes prelabelled in vivo with [U-14C]arachidonic acid. Phospholipid-bound 15-hydroperoxyarachidonic acid would have the structural requirements needed for 4-hydroxynonenal (CH3-(CH2)4-CH(OH)-CH=CH-CHO). Microsomes supplemented with 15-hydroperoxyarachidonic acid and NADPH, ADP/iron converted only minimal amounts (0.6 mol%) of 15-hydroperoxyarachidonic acid into 4-hydroxynonenal; similarly, 15-hydroperoxyarachidonic acid incubated at pH 7.4 in the presence of ascorbate/iron yielded only small amounts of 4-hydroxynonenal with a rate orders of magnitude below that observed with microsomes. Phospholipid-bound 15-hydroperoxyarachidonic acid is therefore not a likely intermediate in the reaction pathway leading to 4-hydroxynonenal. The rate of 4-hydroxynonenal formation is highest during the very initial phase of its formation and the onset does not show a lag phase, suggesting a transient intermediate predominantly formed during the early phase of microsomal lipid peroxidation. After 60 min of incubation, 204 nmol polyunsaturated fatty acids (20 nmol 18:2, 143 nmol 20:4, 41 nmol 22:6) were lost per mg microsomal protein and the incubation mixture contained 206 nmol lipid peroxides, 71.6 nmol malonic dialdehyde and 4.6 nmol 4-hydroxynonenal per mg protein. Under artificial conditions (pH 1.0, ascorbate/iron, 20 h of incubation) not comparable to the microsomal peroxidation system, 15-hydroperoxyarachidonic acid can be decomposed in good yields (15 mol%) into 4-hydroxynonenal. Autoxidation of arachidonic acid in the presence of ascorbate/iron gave after 25 h of incubation 2.8 mol% (pH 7.4) and 1.5 mol% (pH 1.0) 4-hydroxynonenal. The most remarkable difference between the non-enzymic system and the enzymic microsomal system is that the latter forms 4-hydroxynonenal at a much higher rate.  相似文献   

18.
Gas phase ethyl acetate production was studied using a porcine pancreatic lipase powder. It was observed that gaseous ethyl acetate was produced from gaseous ethanol and acetic acid. Accordingly, the effects of amount of lipase powder, gaseous ethanol and acetic acid concentrations, and reaction temperature on the performance of a batch bioreactor were investigated. Apparent Michaelis-Menten constant of ethanol was 0.163 [μM] and there was no inhibition by ethanol over the range investigated. As acetic acid concentration increased, ethyl acetate production increased to a maximum, then decreased, thus suggesting the inhibition effects by acetic acid. Over the reaction temperature of 25–55?°C, activation energy was calculated as 3.93 kcal/gmol and initial reaction rate was obtained as follows: r?=?75.7 exp(?1975.7/T) [μM/mg of lipase/hr]  相似文献   

19.
Candida rugosa lipase (EC 3.1.1.3.) was immobilized in a hydrophilic polyurethane foam and used in the hydrolysis of olive oil, in H-hexane. The results obtained were compared with those from a previous study, in which the same lipase preparation was used in the esterification of ethanol with butyric acid.

The initial rate of hydrolysis increased exponentially with increasing olive oil concentration. In contrast, for the esterification reaction, Michaelis-Menten kinetics with inhibition by both substrates, had been observed.

The effect of medium viscosity, stirring conditions and size of immobilization particles could not explain the observed kinetics of the hydrolytic reaction. However, a direct relationship was observed between the log P values of the reaction medium and the initial rate of hydrolysis, i.e., activation of the immobilized Candida rugosa lipase appears to be promoted by a high hydrophobicity of the reaction medium.

In the case of the esterification reaction, no similar correlation was found.  相似文献   

20.
来源于链霉菌的赖氨酸酰化酶Sm-ELA能催化赖氨酸和月桂酸在水相中合成月桂酰赖氨酸,避免了采用化学合成法所必需的高温和有机溶剂条件,是一种节能、环境友好的替代方法。构建了过表达链霉菌赖氨酸酰化酶基因的重组质粒pET28a-SmELA和pTrcOmpXK122SmELA,分别实现了该酶在大肠杆菌胞内和细胞表面的活性表达。比较两种不同表达方式的效果后,将重组酶应用于催化合成月桂酰赖氨酸的反应中,结果显示,在赖氨酸浓度为50 mmol/L,月桂酸浓度为10 mmol/L时,反应24 h,月桂酸转化率最高达到31.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号