首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J A Hamilton 《Biochemistry》1989,28(6):2514-2520
Interactions of carbonyl 13C-enriched triacylglycerols (TG) with phospholipid bilayers [egg phosphatidylcholine (PC), dipalmitoylphosphatidylcholine (DPPC), and an ether-linked phosphatidylcholine] were studied by 13C NMR spectroscopy. Up to 3 mol % triolein (TO) or tripalmitin (TP) was incorporated into DPPC vesicles by cosonication of the TG and DPPC at approximately 50 degrees C. NMR studies were carried out in a temperature range (30-50 degrees C) in which pure TO is a liquid whereas pure TP is a solid. In spectra of DPPC vesicles with TG at 40-50 degrees C, both TO and TP had narrow carbonyl resonances, indicative of rapid motions, and chemical shifts indicative of H bonding of the TG carbonyls with solvent (H2O) at the aqueous interfaces of the vesicle bilayer. Below the phase transition temperature of the DPPC/TG vesicles (approximately 36 degrees C), most phospholipid peaks broadened markedly. In DPPC vesicles with TP, the TP carbonyl peaks broadened beyond detection below the transition, whereas in vesicles with TO, the TO carbonyl peaks showed little change in line width or chemical shift and no change in the integrated intensity. Thus, in the gel phase, TP solidified with DPPC, whereas TO was fluid and remained oriented at the aqueous interfaces. Egg PC vesicles incorporated up to 2 mol % TP at 35 degrees C; the TP carbonyl peaks had line-width and chemical shift values similar to those for TP (or TO) in liquid-crystalline DPPC. TO incorporated into ether-linked PC had properties very similar to TO in ester-linked PC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have investigated the phospholipase A(2) catalyzed hydrolysis of supported phospholipid bilayers using neutron reflection and ellipsometry. At the hydrophilic silica-water interface, hydrolysis of phosphatidylcholine bilayers by phospholipase A(2) from Naja mossambica mossambica venom is accompanied by destruction of the bilayer at an initial rate, which is comparable for DOPC and DPPC but is doubled for POPC. The extent of bilayer destruction at 25 degrees C decreases from DOPC to POPC and is dramatically reduced for DPPC. Neutron reflectivity measurements indicate that the enzyme penetrates into the bilayers in increasing order for DOPC, POPC, and DPPC, while the amount of enzyme adsorbed at the interface is smallest for DPPC and exhibits a maximum for POPC. Penetration into the hydrophobic chain region in the bilayer is further supported by the fact that the enzyme adsorbs strongly and irreversibly to a hydrophobic monolayer of octadecyltrichlorosilane. These results are rationalized in terms of the properties of the reaction products and the effect of their accumulation in the membrane on the kinetics of enzyme catalysis.  相似文献   

3.
The exchange of phosphatidylcholine between [32P]phosphatidylcholine liposomes and unlabeled mitochondria was catalyzed by a purified phospholipid exchange protein from bovine heart cytosol. The loss of [32P]phosphatidylcholine from the liposomes appeared to proceed in two stages: with 100 units of phospholipid exchange protein per ml the half-time of initial stage was about 10 min and that of the final stage 4 days or greater. Agarose-gel chromatography of the liposomes showed an elution compatible with a homogeneous pool of small single walled vesicles. Treatment of phosphatidyl [14C]choline liposomes with phospholipase D (phosphatidylcholine phosphatidohydrolase) showed that labeled phospholipid removable during the rapid exchange phase was subject to hydrolysis by the phospholipase, but that the labeled phospholipid left after the rapid exchange was completed could not be hydrolyzed by phospholipase D. It is proposed that the rapidly exchanging phosphatidylcholine constitutes the outer layer of the liposome bilayer. The long half-lives of 4 days or more probably represent the transposition of Phosphatidylcholine from the inner to the outer layer of the liposome bilayer.  相似文献   

4.
By making use of the capacity of phospholipase A2 to degrade selectively the phospholipid in the outer half of the lipid bilayer of small unilamellar phospholipid/cholesterol vesicles without affecting the retention of a vesicle-encapsulated solute, we demonstrated that the exchange of phosphatidylcholine between such vesicles and human high density lipoprotein involves exclusively the phosphatidylcholine present in the outer monolayer of the vesicle membrane.  相似文献   

5.
Phospholipase A2, a ubiquitous lipolytic enzyme highly active in the hydrolysis of organized phospholipid substrates, has been characterized optically in its action against a variety of phospholipid monolayers using fluorescence microscopy. By labeling the enzyme with a fluorescent marker and introducing it into the subphase of a Langmuir film balance, the hydrolysis of lipid monolayers in their liquid-solid phase transition region could be directly observed with the assistance of an epifluorescence microscope. Visual observation of hydrolysis of different phospholipid monolayers in the phase transition region in real-time could differentiate various mechanisms of hydrolytic action against lipid solid phase domains. DPPC solid phase domains were specifically targeted by phospholipase A2 and were observed to be hydrolyzed in a manner consistent with localized packing density differences. DPPE lipid domain hydrolysis showed no such preferential phospholipase A2 response but did demonstrate a preference for solid/lipid interfaces. DMPC solid lipid domains were also hydrolyzed to create large circular areas in the monolayer cleared of solid phase lipid domains. In all cases, after critical extents of monolayer hydrolysis in the phase transition region, highly stabile, organized domains of enzyme of regular sizes and morphologies were consistently seen to form in the monolayers. Enzyme domain formation was entirely dependent upon hydrolytic activity in the monolayer phase transition region and was not witnessed otherwise.  相似文献   

6.
Convertase has homology with carboxylesterases, but its substrate(s) is not known. Accordingly, we determined whether dipalmitoylphosphatidylcholine (DPPC), the major phospholipid in surfactant, was a substrate for convertase. We measured [(3)H]choline release during cycling of the heavy subtype containing [(3)H]choline-labeled DPPC with convertase, phospholipases A(2), B, C, and D, liver esterase, and elastase. Cycling with liver esterase or peanut or cabbage phospholipase D produced the characteristic profile of heavy and light peaks observed on cycling with convertase. In contrast, phospholipases A(2), B, and C and yeast phospholipase D produced a broad band of radioactivity across the gradient without distinct peaks. [(3)H]choline was released when natural surfactant containing [(3)H]choline-labeled DPPC was cycled with yeast phospholipase D but not with convertase or peanut and cabbage phospholipases D. Similarly, yeast phospholipase D hydrolyzed [(3)H]choline from [(3)H]choline-labeled DPPC after incubation in vitro, whereas convertase, liver esterase, or peanut and cabbage phospholipases D did not. Thus convertase, liver esterase, and plant phospholipases D did not hydrolyze choline from DPPC either on cycling or during incubation with enzyme in vitro. In conclusion, conversion of heavy to light subtype of surfactant by convertase may require a phospholipase D type hydrolysis of phospholipids, but the substrate in this reaction is not DPPC.  相似文献   

7.
Phospholipid asymmetry in the isolated sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The total phospholipid content and distribution of phospholipid species between the outer and inner monolayers of the isolated sarcoplasmic reticulum membrane was measured by phospholipase A2 activities and neutron diffraction. Phospholipase measurements showed that specific phospholipid species were asymmetric in their distribution between the outer and inner monolayers of the sarcoplasmic reticulum lipid bilayer; phosphatidylcholine (PC) was distributed 48/52 +/- 2% between the outer and inner monolayer of the sarcoplasmic reticulum bilayer, 69% of the phosphatidyl-ethanolamine (PE) resided mainly in the outer monolayer of the bilayer, 85% of the phosphatidylserine (PS) and 88% of the phosphatidylinositol (PI) were localized predominantly in the inner monolayer. The total phospholipid distribution determined by these measurements was 48/52 +/- 2% for the outer/inner monolayer of the sarcoplasmic reticulum lipid bilayer. Sarcoplasmic reticulum phospholipids were biosynthetically deuterated and exchanged into isolated vesicles with both a specific lecithin and a general exchange protein. Neutron diffraction measurements directly provided lipid distribution profiles for both PC and the total lipid content in the intact sarcoplasmic reticulum membrane. The outer/inner monolayer distribution for PC was 47/53 +/- 1%, in agreement with phospholipase measurements, while that for the total lipid was 46/54 +/- 1%, similar to the phospholipase measurements. These neutron diffraction results regarding the sarcoplasmic reticulum membrane bilayer were used in model calculations for decomposing the electron-density profile structure (10 A resolution) of isolated sarcoplasmic reticulum previously determined by X-ray diffraction into structures for the separate membrane components. These structure studies showed that the protein profile structure within the membrane lipid bilayer was asymmetric, complementary to the asymmetric lipid structure. Thus, the total phospholipid asymmetry obtained by two independent methods was small but consistent with a complementary asymmetric protein structure, and may be related to the highly vectorial functional properties of the calcium pump ATPase protein in the sarcoplasmic reticulum membrane.  相似文献   

8.
A Kumar  C M Gupta 《Biochemistry》1985,24(19):5157-5163
The effect of the altered polar head group of phosphatidylcholine (PC) on its transbilayer distributions in small unilamellar vesicles containing sphingomyelin (SM) was ascertained with phospholipase A2 as the external membrane probe. These vesicles were formed by sonication and fractionated by centrifugation. The vesicle size was determined by gel-permeation chromatography and solute entrapment. Experiments were done to confirm that phospholipase A2 treatments did not induce fusion, lyse the vesicles, or cause PC to migrate across the vesicle bilayer. The complete degradation of external PC in intact vesicles was assured by carrying out the enzyme reactions in the absence as well as in the presence of 9.2 X 10(-5) M bovine serum albumin. In small vesicles comprised of SM and 30 mol % 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DPPC preferentially distributed in the inner monolayer. This preference of DPPC in these vesicles disappeared upon introducing one C2H5 group at the carbon atom adjacent to the quaternary ammonium residue in its polar head group and was reversed when the C2H5 group was replaced by C6H5 and C6H5CH2 substituents or when the P-N distance was increased. These results indicate that the effective polar head-group volume is an important factor in determining the phospholipid distributions across the small vesicle bilayer.  相似文献   

9.
1. The distribution of phospholipids between the two leaflets of the lipid bilayer in acetylcholine receptor (AChR)-rich membranes from T. marmorata has been examined with two complementary techniques: chemical derivatization with the membrane-impermeable reagent trinitrobenzenesulphonate (TNBS) and B.cereus phospholipase C hydrolysis. 2. AChR-membranes were reacted with TNBS at 0-4 and 37 degrees C and the accessibility of their aminophospholipids was compared to that of rod outer segment and erythrocyte membranes. The results indicate that more of the total ethanolamine glycerophospholipid (EGP) than of the total phosphatidylserine (PS) is located in the outer monolayer. 3. Nearly half the phospholipid content of AChR membranes is hydrolyzed by phospholipase C with a half-time of ca. 1.6 min at 25 degrees C. Consistent with the TNBS results, more of the total EGP than of the total PS is degraded. Beyond 3 min the reaction slows down, relatively smaller additional amounts of lipids are hydrolyzed, and all phospholipid classes are attacked to a similar extent, indicating that after half the lipid is removed all phospholipids become accessible to the enzyme. 4. The results indicate that the outer leaflet of the bilayer is richer in ethanolamine and choline glycerophospholipids, whereas phosphatidylinositol, most of the sphingomyelin, and ca 65% of the PS are located on the inner leaflet.  相似文献   

10.
The effects of tumour promoters, namely phorbol esters and teleocidin, on the activity of porcine pancreatic phospholipase A2 (PLA2) was investigated by using a system of small unilamellar vesicles composed of dipalmitoyl-phosphatidylcholine (DPPC). DPPC vesicles encapsulating Quin 2 (Quin 2/DPPC vesicles) were suspended in a medium containing Ca2+. The addition of PLA2 to Quin 2/DPPC vesicles increased the fluorescence intensity of Quin 2. This increase was due to chelation of Quin 2 with Ca2+, which resulted from an increase in the permeability of the phospholipid bilayer caused by the hydrolytic activity of PLA2. The tumour promoters phorbol 12-myristate 13-acetate (PMA) and teleocidin, at low concentrations, enhanced PLA2 activity at temperatures below the phase-transition temperature of the membrane, but, in contrast, high concentrations of the tumour promoters suppressed PLA2 activity. Phorbol 12-myristate (PM) also had a similar effect on PLA2 activity. PMA and PM disturbed the membrane structure markedly, which was indicated by the enhanced leakage of carboxyfluorescein (CF) from DPPC vesicles encapsulating CF. On the other hand, phorbol 12,13-didecanoate and 4 alpha-phorbol 12,13-didecanoate, which did not disturb the membrane structure to the same extent, had an insignificant effect on PLA2 activity. It is therefore concluded that PLA2 catalyses the hydrolysis of phospholipids in bilayer vesicles which contain a moderate degree of structural defects. However, the effects of tumour promoters on PLA2 activity was not related to their potencies as inflammatory and tumour-promoting agents.  相似文献   

11.
[14C]Choline was incorporated into microsomal membranes in vivo, and from CDP-[14C]choline in vitro, and the site of incorporation determined by hydrolysis of the outer leaflet of the membrane bilayer using phospholipase C from Clostridium welchii. Labelled phosphatidylcholine was found to be concentrated in the outer leaflet of the membrane bilayer with a specific activity approximately three times that of the inner leaflet. During incorporation of CDP-choline and treatment with phospholipase C the vesicles retained labelled-protein contents indicating that they remained intact. When the microsomes were opened with taurocholate after incorporation of [14C]choline in vivo, the labelled phosphatidylcholine behaved as a single pool. Selective hydrolysis of labelled phosphatidylcholine in intact vesicles is not, therefore, a consequence of specificity of phospholipase C. These results indicate that the phosphatidylcholine of the outer leaflet of the microsomal membrane bilayer is preferentially labelled by the choline-phosphotransferase pathway and that this pool of phospholipid does not equilibrate with that of the inner leaflet.  相似文献   

12.
A Sen  T V Isac  S W Hui 《Biochemistry》1991,30(18):4516-4521
The hydrolysis of mixed dilinoleoylphosphatidylethanolamine (DiLinPE) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) dispersions by porcine phospholipase A2, under conditions leading to the bilayer-to-nonbilayer phase transition, has been studied. Two structurally distinct forms of the dispersions were used, multilamellar vesicles (MLV) and supercritical large unilamellar vesicles (SCLUV). In MLV, maximum free fatty acid was produced in dispersions containing 85 mol % DiLinPE. The peak in the fatty acid release is found at the onset of appearance of the nonbilayer defects reported earlier. DiLinPE was found to be preferentially hydrolyzed as compared to POPC. When cholesterol was added to the mixed DiLinPE/POPC MLV, the onset of the observable appearance of nonbilayer defects, the positions of the peaks for total hydrolysis, and the preferential hydrolysis of DiLinPE were all shifted toward lower DiLinPE concentrations. In SCLUV, where the appearance of nonbilayer structures is prevented by constraining the lipids in bilayer configuration, the hydrolysis by PLA2 increases with increasing DiLinPE as predicted from the increase in the calculated monolayer bending energy. The results are interpreted to be related to the pretransition molecular-packing stress and defects at the onset of the bilayer-to-nonbilayer transition. Results indicate that the porcine pancreatic phospholipase A2 activity is controlled by bilayer-packing stress, which may cause structural defects of the substrate, among other factors. Results also indicate a preferential localization of PE at stress-related defect regions.  相似文献   

13.
The solubilization of cholesteryl oleate in sonicated phosphatidylcholine vesicles containing between 0 and 50 mol% cholesterol was studied by 13C-NMR using isotopically enriched [carbonyl-13C]cholesteryl oleate. The carbonyl-13C chemical shift from cholesteryl oleate in the phospholipid/cholesterol bilayer was significantly downfield from that for cholesteryl oleate in an oil phase and the peak area, relative to that of the phospholipid carbonyl, was used to determine bilayer solubility of the ester. The solubility (with respect to phospholipid) in the phospholipid bilayer without cholesterol (2.9 mol%) was only moderately reduced (to 2.3 mol%) at cholesterol levels up to 33 mol% but showed a more marked reduction to 1.4 mol% at 40 mol% cholesterol or 1.2 mol% at 50 mol% cholesterol. Since the vesicles containing 50 mol% cholesterol were larger (520 +/- 152 A diameter) than those with no cholesterol (291 +/- 97 A diameter), we measured the solubility of cholesteryl oleate in large vesicles with no cholesterol, prepared by extrusion through polycarbonate membrane filters, and found it similar to that in small, sonicated vesicles with no cholesterol. Therefore, the larger size of vesicles was not the factor responsible for the decreased cholesteryl oleate solubility at high cholesterol contents. A more direct effect of cholesterol is envisioned where the ester becomes displaced to deeper regions of the bilayer.  相似文献   

14.
We have examined the effects of phospholipase C from Bacillus cereus on the extent of phospholipid hydrolysis in envelope membrane vesicles and in intact chloroplasts. When isolated envelope vesicles were incubated in presence of phospholipase C, phosphatidylcholine and phosphatidylglycerol, but not phosphatidylinositol, were totally converted into diacylglycerol if they were available to the enzyme (i.e., when the vesicles were sonicated in presence of phospholipase C). These experiments demonstrate that phospholipase C can be used to probe the availability of phosphatidylcholine and phosphatidylglycerol in the cytosolic leaflet of the outer envelope membrane from spinach chloroplasts. When isolated, purified, intact chloroplasts were incubated with low amounts of phospholipase C (0.3 U/mg chlorophyll) under very mild conditions (12 degrees C for 1 min), greater than 80% of phosphatidylcholine molecules and almost none of phosphatidylglycerol molecules were hydrolyzed. Since we have also demonstrated, by using several different methods (phase-contrast and electron microscopy, immunochemical and electrophoretic analyses) that isolated spinach chloroplasts, and especially their outer envelope membrane, remained intact after mild treatment with phospholipase C, we can conclude that there is a marked asymmetric distribution of phospholipids across the outer envelope membrane of spinach chloroplasts. Phosphatidylcholine, the major polar lipid of the outer envelope membrane, is almost entirely accessible from the cytosolic side of the membrane and therefore is probably localized in the outer leaflet of the outer envelope bilayer. On the contrary, phosphatidylglycerol, the major polar lipid in the inner envelope membrane and the thylakoids, is probably not accessible to phospholipase C from the cytosol and therefore is probably localized mostly in the inner leaflet of the outer envelope membrane and in the other chloroplast membranes.  相似文献   

15.
The phospholipid organization in unilamellar vesicles comprised of various purified phospholipid components of monkey erythrocyte membrane was ascertained using phospholipase A2 and trinitrobenzenesulfonic acid as external membrane probes. The vesicles were formed by sonication or detergent dialysis and fractionated by centrifugation or gel permeation chromatography. Experiments were done to confirm that the phospholipase A2 treatments did not cause lysis or induce fusion of the vesicles. This enzyme hydrolysed only the glycerophospholipids in the outer surface of the vesicles. The amounts of the external phospholipids determined by this enzymatic method were verified using the chemical probe, trinitrobenzenesulfonic acid. The choline-containing phospholipids and phosphatidylethanolamine localized randomly in the two surfaces of sonicated vesicles (outer diameter, about 30 nm), whereas phosphatidylserine preferentially distributed in the inner monolayer. This phosphatidylserine asymmetry virtually disappeared in detergent dialysed vesicles (outer diameter, about 45 nm). Furthermore, inclusion of cholesterol in both the types of vesicles resulted in more random glycerophospholipid distributions across the plane of vesicles bilayer, presumably due to the cholesterol-induced increases in the size of vesicles. These results demonstrate that the transbilayer distribution of erythrocyte membrane phospholipids in unilamellar vesicles are controlled mainly by the surface curvature rather than by interlipid interactions, and therefore suggest that phospholipid-phospholipid and phospholipid-cholesterol interactions should not play any significant role in determining the membrane phospholipid asymmetry in red cells. It is proposed that this asymmetry primarily originates from differential bindings of phospholipids with membrane proteins in the two leaflets of the membrane bilayer.  相似文献   

16.
P J Spooner  D M Small 《Biochemistry》1987,26(18):5820-5825
Triacylglycerols are the major substrates for lipolytic enzymes that act at the surface of emulsion-like particles such as triglyceride-rich lipoproteins, chylomicrons, and intracellular lipid droplets. This study examines the effect of cholesterol on the solubility of a triacylglycerol, triolein, in phospholipid surfaces. Solubilities of [carbonyl-13C]triolein in phospholipid bilayer vesicles containing between 0 and 50 mol % free cholesterol, prepared by cosonication, were measured by 13C NMR. The carbonyl resonances from bilayer-incorporated triglyceride were shifted downfield in the 13C NMR spectra from those corresponding to excess, nonincorporated material. This enabled solubilities to be determined directly from carbonyl peak intensities at most cholesterol concentrations. The bilayer solubility of triolein was inversely proportional to the cholesterol/phospholipid mole ratio. In pure phospholipid vesicles the triolein solubility was 2.2 mol %. The triglyceride incorporation decreased to 1.1 mol % at a cholesterol/phospholipid mole ratio of 0.5, and at a mole ratio of 1.0 for the bilayer lipids, the triolein solubility was reduced to just 0.15 mol %. The effects of free cholesterol were more pronounced and progressive than observed previously on the bilayer solubility of cholesteryl oleate (Spooner, P. J. R., Hamilton, J. A., Gantz, D. L., & Small, D. M. (1986) Biochim. Biophys. Acta 860, 345-353]. As with cholesteryl oleate, we suggest that cholesterol also displaces solubilized triglyceride to deeper regions of the bilayer.  相似文献   

17.
The interaction of diacylglycerols, primarily 1,2-dilauroyl-sn-glycerol (1,2-DLG), with egg phosphatidylcholine (PC) bilayers was studied by NMR spectroscopy and other physical techniques. In the low proportions used (less than or equal to 20 mol % with respect to total lipid), 1,2-DLG formed bilayers with PC with no hexagonal phase separation, as assessed by light, polarizing and electron microscopy, and 31P and 13C NMR spectroscopy. The 13C-carbonyl chemical shift of 90% [13C]carbonyl 1,2-DLG was monitored in small unilamellar vesicles as a function of relative DLG content (1.5-20%) and temperature (10-55 degrees C). The chemically inequivalent sn-1 and sn-2 carbonyls gave a single, narrow resonance in vesicles, in contrast to neat 1,2-DLG and 1,2-DLG in organic solvents, whose spectra showed two well-separated carbonyl resonances. The chemical shift of 1,2-DLG in PC shows that the carbonyl groups are proximal to the aqueous interface, necessitating orientation of the DLG molecule along the normal to the bilayer. Both carbonyl groups are H-bonded to H2O, but the secondary ester (sn-2) carbonyl is relatively more hydrated than the primary ester (sn-1) carbonyl. The 13C-carbonyl chemical shift data further suggest that the interfacial conformation resembles that of crystalline and liquid crystalline lamellar 1,2-dilauroyl-sn-glycero-3-phosphatidylethanolamine and certain PCs, in which the glycerol backbone is perpendicular to the bilayer plane. This conformation is different from that of crystalline 1,2-dilauroyl-sn-glycerol, in which the glycerol backbone is parallel to the bilayer plane. Between 1.5 and 8% DLG in vesicles, the chemical shift of the 1,2-DLG carbonyl at a given temperature was constant. However, above 8% DLG the chemical shift at each temperature increased with increasing DLG concentration, suggesting increased hydration at higher DLG content. At low temperatures 13C NMR spectra of vesicles with the highest proportions of 1,2-DLG studied (15 and 20%) showed two DLG carbonyl resonances, which most likely represent 1,2-DLG on outer and inner leaflets of the vesicle bilayer. The two peaks collapsed into a single resonance by 38 degrees C, at which temperature the two environments equilibrate with a rate constant of approximately 60 s-1 (t1/2 approximately 10 ms). Thus, transbilayer movement of DLG is extremely fast compared with phospholipids. In vesicles the 1,3-isomer of DLG exhibited a narrow carbonyl peak slightly downfield from that of 1,2-DLG. Acyl chain migration from 1,2-DLG to 1,3-DLG was monitored directly in the vesicle by time-dependent NMR measurements.  相似文献   

18.
F Ghomashchi  B Z Yu  O Berg  M K Jain  M H Gelb 《Biochemistry》1991,30(29):7318-7329
The binding equilibrium of phospholipase A2 (PLA2) to the substrate interface influences many aspects of the overall kinetics of interfacial catalysis by this enzyme. For example, the interpretation of kinetic data on substrate specificity was difficult when there was a significant kinetic contribution from the interfacial binding step to the steady-state catalytic turnover. This problem was commonly encountered with vesicles of zwitterionic phospholipids, where the binding of PLA2 to the interface was relatively poor. The action of PLA2 on phosphatidylcholine (PC) vesicles containing a small amount of anionic phospholipid, such as phosphatidic acid (PA), was studied. It was shown that the hydrolysis of these mixed lipid vesicles occurs in the scooting mode in which the enzyme remains tightly bound to the interface and only the substrate molecules present on the outer monolayer of the target vesicle became hydrolyzed Thus the phenomenon of scooting mode hydrolysis was not restricted to the action of PLA2 on vesicles of pure anionic phospholipids, but it was also observed with vesicles of zwitterionic lipids as long as a critical amount of anionic compound was present. Under such conditions, the initial rate of hydrolysis of PC in the mixed PC/PA vesicles was enhanced more than 50-fold. Binding studies of PLA2 to vesicles and kinetic studies in the scooting mode demonstrated that the enhancement of PC hydrolysis in the PC/PA covesicles was due to the much higher affinity of the enzyme toward covesicles compared to vesicles of pure PC phospholipids. A novel and technically simple protocol for accurate determination of the substrate specificity of PLA2 at the interface was also developed by using a double-radiolabel approach. Here, the action of PLA2 in the scooting mode was studied on vesicles of the anionic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphomethanol that contained small amounts of 3H- and 14C-labeled phospholipids. From an analysis of the 3H and 14C radioactivity in the released fatty acid products, the ratio of substrate specificity constants (kcat/KMS) was obtained for any pair of radiolabeled substrates. These studies showed that the PLA2s from pig pancreas and Naja naja naja venom did not discriminate between phosphatidylcholine and phosphatidylethanolamine phospholipids or between phospholipids with saturated versus unsaturated acyl chains and that the pig enzyme had a slight preference for anionic phospholipids (2-3-fold). The described protocol provided an accurate measure of the substrate specificity of PLA2 without complications arising from the differences in binding affinities of the enzyme to vesicles composed of pure phospholipids.  相似文献   

19.
Acrylodan-labeled rat-intestinal fatty acid binding protein, ADIFAB, binds both of lysophosphatidylcholines (LPC) and FA. Binding displaces Acrylodan and its fluorescence peak shifts from 432 to 505 nm. A fluorescence assay that relies on this shift is presented for quantitating LPC, FA, and phospholipase A(2) (PLA(2)) activity in phospholipid bilayers in absolute units of μM/min/mg of enzyme. This is a development over an earlier assay that took into account only FA binding. Activities of bee venom PLA(2) on dipalmitoylphosphatidylcholine (DPPC) and dioleylphosphatidylcholine (DOPC) bilayers were measured. Standard pH-Stat assays validated the present assay. Products increase linearly with time for about one minute in DOPC and five minutes in DPPC corresponding to completion of 5 to 8% hydrolysis in DOPC and 20% in DPPC. Membrane polarity and microviscosity measured using electron spin resonance (ESR) exhibited discontinuities at compositions that mimicked similar percentages of hydrolysis products in the respective bilayers. The observed hydrolysis rate decrease following the initial linear period thus correlates to changes in membrane polarity. The ability of the assay to yield actual product concentrations, reveal structure in the reaction progress curves, and interpretation in light of the ESR data bring insight into the shape of the reaction curve.  相似文献   

20.
Upon storage of phospholipid liposome samples, lysolipids, fatty acids, and glycerol-3-phosphatidylcholine are generated as a result of acid- or base-catalyzed hydrolysis. Accumulation of hydrolysis products in the liposome membrane can induce fusion, leakage, and structural transformations of the liposomes, which may be detrimental or beneficial to their performance depending on their applications as, e.g., drug delivery devices. We investigated in the present study the influence of phospholipid hydrolysis on the aggregate morphology of DPPC/DSPE-PEG2000 liposomes after transition of the phospholipid membrane from the gel phase to liquid crystalline phase using high performance liquid chromatography (HPLC) in combination with static light scattering, dynamic light scattering, and cryo-transmission electron microscopy (cryo-TEM). The rates of DPPC hydrolysis in DPPC/DSPE-PEG2000 liposomes were investigated at a pH of 2, 4, or 6.5 and temperatures of 22 degrees C or 4 degrees C. Results indicate that following phase transition, severe structural reorganizations occurred in liposome samples that were partially hydrolyzed in the gel phase. The most prominent effect was an increasing tendency of liposomes to disintegrate into membrane discs in accordance with an increasing degree of phospholipid hydrolysis. Complete disintegration occurred when DPPC concentrations had decreased by, in some cases, as little as 3.6%. After extensive phospholipid hydrolysis, liposomes and discs fused to form large bilayer sheets as well as other more complex bilayer structures apparently due to a decreased ratio of lysolipid to palmitic acid levels in the liposome membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号