首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three biologically active isoforms of platelet-derived growth factor (PDGF) exist: PDGF-AB, the predominant form in human platelets; PDGF-BB, the product of the c-sis protooncogene; and PDGF-AA. PDGF-BB and PDGF-AB interact with two distinct PDGF receptors (termed alpha and beta) of similar size, whereas PDGF-AA binds alpha receptors only. To dissect alpha and beta receptor-mediated signals, we compared the biological activities of PDGF-AA and PDGF-BB in density-arrested BALB/c-3T3 cells, which possess a 4:1 ratio of beta to alpha receptors, and assessed the contribution of alpha receptors to PDGF-BB- and PDGF-AB-induced responses. In addition, we describe a convenient method for resolving alpha and beta receptors on one-dimensional protein gels. This protocol involves treatment of cells with neuraminidase, a desialylating agent, and subsequent in vitro autophosphorylation of solubilized cells, and was used to monitor the presence or absence of alpha and beta receptors under various experimental conditions. Our data show that although higher concentrations were required, PDGF-AA stimulated DNA synthesis to the same extent as did PDGF-BB. Both isoforms induced inositol phosphate formation, epidermal growth factor transmodulation, and PDGF receptor autophosphorylation; PDGF-AA, however, was less effective than was PDGF-BB even at doses causing maximal mitogenesis. Pretreatment of cells with PDGF-AA for 30-60 min at 37 degrees C effectively down-regulated alpha receptors as verified by the absence of desialylated alpha receptor phosphorylation. Depletion of alpha receptors did not affect the capacity of PDGF-BB or PDGF-AB to activate the beta receptor tyrosine kinase, as assessed by tyrosine phosphorylation of an endogenous substrate, or stimulate the formation of inositol phosphates. We suggest that alpha and beta receptors independently mediate similar biological responses in BALB/c-3T3 cells, and that alpha receptors are not required for responses induced by PDGF-BB or PDGF-AB.  相似文献   

2.
Binding of platelet-derived growth factor (PDGF) to its cell surface receptors stimulates a variety of biochemical and biological responses. Two receptor gene products (designated alpha and beta) have been identified, and the different binding affinities of various PDGF isoforms for these receptors are prime determinants of the spectrum of responses observed. The beta receptor binds PDGF-BB, but not PDGF-AA, while the alpha receptor binds PDGF-AA and PDGF-BB. We utilized these different ligand binding specificities to investigate the PDGF-AA binding site in the human alpha-PDGF receptor by constructing chimeric molecules between the human alpha- and beta-PDGF receptors. Our results demonstrate that amino acids 1-340 of the alpha-PDGF receptor comprise the region that confers PDGF-AA binding specificity. This region corresponds to immunoglobulin-like sub-domains 1, 2, and 3 of its external domain.  相似文献   

3.
Platelet-derived growth factor (PDGF) occurs as homodimers or heterodimers of related polypeptide chains PDGF-BB, -AA, and -AB. There are two receptors that bind PDGF, termed alpha and beta. The beta receptor recognizes PDGF B chain and is dimerized in response to PDGF BB. The alpha receptor recognizes PDGF B as well as A chains and can be dimerized by the three dimeric forms of PDGF AA, AB, and BB. To characterize PDGF receptor signaling mechanisms and biologic activities in human mesangial cells (MC), we explored the effects of the three PDGF isoforms on DNA synthesis, phospholipase C activation, and PDGF protooncogene induction. PDGF-BB homodimer and AB heterodimer induced a marked increase in DNA synthesis, activation of phsopholipase C, and autoinduction of PDGF A and B chain mRNAs, whereas PDGF-AA homodimer was without effect. The lack of response to PDGF AA could be accounted for by down regulation of the PDGF-alpha receptor since preincubation of MC with suramin restored PDGF AA-induced DNA synthesis. Ligand binding studies demonstrate specific binding of labeled PDGF BB and AB and to a lower extent PDGF AA isoforms to mesangial cells. These results are consistent with predominant expression of PDGF beta receptor in MC, which is linked to phospholipase-C activation. The potent biologic effects of PDGF-AB heterodimer in cells that express very few alpha receptors and do not respond to PDGF AA are somewhat inconsistent with the currently accepted model of PDGF receptor interaction and suggest the presence of additional mechanisms for PDGF isoform binding and activation. © 1994 Wiley-Liss, Inc.  相似文献   

4.
5.
We have compared the biological and biochemical properties of recombinant PDGF AA, AB, and BB using three types of fibroblastic cells: NIH/3T3, human skin fibroblast, and fetal bovine aortic smooth muscle. PDGF binding, receptor autophosphorylation, phosphatidyl inositol hydrolysis, as well as chemotactic and mitogenic responses of the cells were analyzed. PDGF-AB and PDGF-BB showed similar receptor binding, receptor autophosphorylation, and potent biological activity for all three of the cell types tested. In contrast, PDGF-AA was biologically active only for the NIH/3T3 cells in which binding sites for PDGF-AA were abundant, but was inactive for bovine aortic smooth muscle cells and human skin fibroblasts in which binding sites for PDGF-AA were absent. PDGF-AA could not induce any biochemical changes in the human skin fibroblasts or smooth muscle cells. Western blot studies with anti-Type alpha and beta PDGF receptor antibodies indicate that the NIH/3T3 cells contained both PDGF alpha and beta receptors, whereas the human skin fibroblasts and bovine smooth muscle cells contained only detectable levels of beta receptors. These results indicate that cells possessing high levels of PDGF beta receptors only are capable of responding equally well to either PDGF AB or BB.  相似文献   

6.
Polyribocytidylic-polyriboinosinic acid [poly r(I):r(C)]-inducible genes were isolated by a differential screening procedure from a human fibroblast cell (FS-4) cDNA bank. Among yet unidentified genes (gene 274), one codes for a protein with multiple finger motifs and has previously been detected in endothelial cells after tumor necrosis factor-alpha (TNF-alpha) treatment (A20; Opipari et al., 1990), the second one codes for a variant of the I kappa B family (Haskill et al., 1991), and a third one for the Ca2+ ATPase (isoform 1). Platelet-derived growth factor (PDGF) isoforms (AA, AB, and BB) stimulated the expression of these immediate-early genes. But the extent of the respective induction correlated neither with the number of the two receptors alpha or beta nor with the level of PDGF-stimulated receptor autophosphorylation on tyrosine. Although alpha-receptors were less abundant than beta-receptors (12,500 binding sites were estimated for PDGF-AA, KD 0.03 nM; 20,000 for PDGF-AB, KD 0.03 nM; 35,000 for PDGF-BB KD 0.16 nM) and tyrosine phosphorylation induced by PDGF-AA was significantly less than that evoked by PDGF-BB, some of the investigated genes were more strongly induced by PDGF-AA. We discuss how the differences in the biological potency of the PDGF isoforms may reside in different functions of the two receptors by activation of alternative signaling pathways.  相似文献   

7.
Human platelet-derived growth factor (PDGF) occurs as three isoforms which are made up of disulfide-bonded A and B chains. The isoforms bind with different affinities to two different but structurally related cell surface receptors. The A type receptor binds all three isoforms (PDGF-AA, PDGF-AB, PDGF-BB) with high affinity, whereas the B type receptor binds PDGF-BB with high affinity, PDGF-AB with lower affinity but does not appear to bind PDGF-AA. We have utilized the differential effects of the three isoforms on actin reorganization and membrane ruffling in human foreskin fibroblasts to probe the idea that ligand-induced receptor dimerization is associated with receptor activation. Actin reorganization was found to be induced only by PDGF-AB and PDGF-BB and is therefore likely to be mediated by the B type receptor. Simultaneous addition of PDGF-AA, or downregulation of the A type receptor blocked the effect of PDGF-AB but not that of PDGF-BB. This is compatible with a model by which PDGF-AB binds to and dimerizes one A and one B type receptor; PDGF-AB therefore requires A type receptors in order to be functionally active at physiological concentrations. In cells with down-regulated A type receptors, high concentrations of PDGF-AB inhibited the effect of PDGF-BB on actin reorganization. We believe that this is due to a monovalent binding of PDGF-AB to the B type receptors which prevents PDGF-BB from dimerizing the receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In certain cells, such as human fibroblasts (AG 1523), there is a clear difference in the cell motility response induced by the different isoforms of platelet-derived growth factor (PDGF). PDGF-BB induces extensive actin reorganization and is a potent chemotactic agent, whereas PDGF-AA has a limited effect on actin reorganization and is not chemotactic. In the present study, we wanted to compare these effects on cell motility with the effects of the PDGF isoforms on phosphoinositide (PtdIns) turnover. We find that stimulation of serum-starved AG 1523 cells with PDGF-AA or PDGF-BB caused an initial increase of the phosphatidylinositol phosphate and bisphosphate (PtdInsP and PtdInsP2) pools, suggesting that activation of the phosphoinositide kinases is an initial response to PDGF stimulation. Despite a lower number of PDGF α-receptors than β-receptors on these cells, the initial formation of PtdInsP and PtdInsP2 appears to be stimulated to a similar degree by the two PDGF isoforms. In contrast, PtdInsP2 hydrolysis, indirectly measured as formation of phosphatidic acid, was correlated to the number of receptors. During prolonged exposure to PDGF-BB the stimulated PtdIns turnover remained at a high level, whereas the effect of PDGF-AA appeared more transient. A marked increase in the synthesis of a component migrating as phosphatidylinositol trisphosphate (PtdInsPa) was also detected after stimulation with PDGF-BB for 5 min. With PDGF-AA minor amounts were found, indicating that activation of the PtdIns 3′-kinase occurs also via the PDGF α-receptor. Stimulation with PDGF-BB, but not -AA, also induced a 50% decrease in lyso-PtdIns. In murine fibroblasts (Swiss 3T3), where the two PDGF isoforms have a similar effect on cell motility, the two PDGF isoforms also similarly induced PtdIns turnover, PtdInsP3 formation, and a decrease in lyso-PtdIns. Thus, there seems to be a correlation between PDGF-induced PtdIns turnover and PDGF-induced actin reorganization. This is compatible with previous evidence suggesting the microfilament formation is directly linked to an increased turnover of polyphosphoinositides in stimulated cells.  相似文献   

9.
Both increases in c-fos proto-oncogene expression and intracellular free calcium ([Ca2+]i) have been implicated as necessary components of the signal transduction pathway by which platelet-derived growth factor (PDGF) stimulates DNA synthesis in cultured BALB/c3T3 fibroblasts. To determine the interrelationship between PDGF-induced increases in c-fos proto-oncogene expression and [Ca2+]i, purified, recombinant BB and AA homodimeric isoforms of PDGF were used to evaluate the dose-response relationships and mechanisms of growth factor-induced changes in these two parameters as well as DNA synthesis. Concentration-dependent increases in [Ca2+]i, c-fos expression, and [3H]thymidine incorporation were observed with both BB and AA PDGF isoforms. BB PDGF was consistently more potent and efficacious than the AA isoform in eliciting a given response. The [Ca2+]i dependency of PDGF-induced increases in c-fos expression and DNA synthesis was determined by pretreatment of cells with agents that inhibit increases in [Ca2+]i: BAPTA, Quin-2, and TMB-8. Under these conditions, PDGF-induced DNA synthesis was blocked, whereas c-fos expression was enhanced. Conversely, in cells made deficient in protein kinase C (PKC) activity by prolonged treatment with phorbol ester, BB and AA PDGF-induced c-fos expression was inhibited by 75-80%, while PDGF-induced increases in [Ca2+]i and DNA synthesis were unaffected or enhanced. Additionally, the PKC-independent component of PDGF-stimulated c-fos expression was found to be independent of increases in [Ca2+]i. These data suggest that 1) both BB and AA PDGF isoforms elicit alterations in [Ca2+]i and c-fos proto-oncogene expression through the same or similar mechanisms in BALB/c3T3 fibroblasts, 2) PDGF-stimulated increases in [Ca2+]i are not required for c-fos expression, and 3) distinct pathways regulate PDGF-induced c-fos expression and mitogenesis, with c-fos expression being substantially PKC-dependent yet [Ca2+]i-independent, while mitogenesis is [Ca2+]i-dependent yet PKC-independent.  相似文献   

10.
11.
The PDGF family: four gene products form five dimeric isoforms   总被引:18,自引:0,他引:18  
Platelet-derived growth factors (PDGFs) were discovered more than two decades ago. Today the PDGF family of growth factors consists of five different disulphide-linked dimers built up of four different polypeptide chains encoded by four different genes. These isoforms, PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC and PDGF-DD, act via two receptor tyrosine kinases, PDGF receptors alpha and beta. The classic PDGFs, PDGF-A and PDGF-B, undergo intracellular activation during transport in the exocytic pathway for subsequent secretion, while the novel PDGFs, PDGF-C and PDGF-D, are secreted as latent factors that require activation by extracellular proteases. The classical PDGF polypeptide chains, PDGF-A and PDGF-B, are well studied and they regulate several physiological and pathophysiological processes, mainly using cells of mesenchymal or neuroectodermal origin as their targets. The discovery of two additional ligands for the two PDGF receptors suggests that PDGF-mediated cellular signaling is more complex than previously thought.  相似文献   

12.
Platelet-derived growth factor (PDGF) and transforming growth factor beta (TGF-beta), potent modulators of mesenchymal cell growth and differentiation, are often colocalizable in vivo. Previous in vitro studies in fibroblastic cell lines have shown variable, even antagonistic effects of TGF-beta on the mitogenic action of PDGF. This study demonstrates that in diploid human dermal fibroblasts, TGF-beta 1 is weakly mitogenic in the absence of serum or purified growth factors, and that TGF-beta 1 potentiates DNA synthesis in PDGF-stimulated fibroblasts with delayed kinetics when compared to stimulation with PDGF alone. TGF-beta 1 enhances mitogenic potency of all three PDGF isoforms and increases receptor binding of both 125I PDGF-AA and 125I PDGF-BB, consistent with the increased expression of the alpha type PDGF receptor. The induction of PDGF alpha receptor subunits by TGF-beta may play a role in enhancing the proliferative potential of human fibroblasts in certain physiologic and pathologic conditions.  相似文献   

13.
Platelet-derived growth factor (PDGF) stimulates the expression of a number of genes associated with entry of quiescent Balb/c-3T3 fibroblasts into the cell cycle. We determined that two of these genes, c-myc and c-fos, are induced equivalently in medium supplemented with platelet-poor plasma (PPP) and either PDGF-BB or PDGF-AA. The rate at which fibroblasts entered S phase was also similar in PDGF-BB- and AA-treated cells as was the expression of the late G1 gene, thymidine kinase (TK). However, PDGF-AA must be present for a period of 16 h to stimulate the proliferation of 90% of the cells, whereas PDGF-BB was required for only 4 h. Exposure of cells to PDGF-AA for 4 h, a time during which maximum expression of c-fos and c-myc occurred, only induced 20% of the cells in a quiescent population to enter the cell cycle. Therefore, PDGF-AA-mediated expression of the immediate early genes c-fos and c-myc may be necessary but is not sufficient to rapidly stimulate density-arrested Balb/c-3T3 fibroblasts into the competent state. Thus, these data suggest that PDGF-AA and PDGF-BB initiate traverse of the cell cycle by distinct mechanisms.  相似文献   

14.
Platelet-derived growth factor (PDGF) consists of three different isoforms, PDGF-AA, PDGF-AB and PDGF-BB, which bind to at least two types of receptors: the B-receptor, to which only PDGF-BB binds, and the A/B receptor, to which all three isoforms bind. Microinjection of synthetic mRNA in Xenopus laevis oocytes was used to obtain cell-surface expression of the human PDGF B-receptor. The production of receptor molecules of correct size (190 kd) was demonstrated by specific immunoprecipitation; the binding properties of the membrane- associated PDGF B-receptor were investigated with highly purified recombinant [125I] labeled human PDGF-BB and -AA. Unlike Swiss mouse 3T3 cells, which possess both B- and A/B-receptors and, therefore, bind both isoforms with high affinity, the mRNA-injected oocytes bound only the BB isoform. Mock-injected oocytes showed no specific binding.  相似文献   

15.
16.
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.  相似文献   

17.
G(12)alpha/G(13)alpha transduces signals from G-protein-coupled receptors to stimulate growth-promoting pathways and the early response gene c-fos. Within the c-fos promoter lies a key regulatory site, the serum response element (SRE). Here we show a critical role for the tyrosine kinase PYK2 in muscarinic receptor type 1 and G(12)alpha/G(13)alpha signaling to an SRE reporter gene. A kinase-inactivate form of PYK2 (PYK2 KD) inhibits muscarinic receptor type 1 signaling to the SRE and PYK2 itself triggers SRE reporter gene activation through a RhoA-dependent pathway. Placing PYK2 downstream of G-protein activation but upstream of RhoA, the expression of PYK2 KD blocks the activation of an SRE reporter gene by GTPase-deficient forms of G(12)alpha or G(13)alpha but not by RhoA. The GTPase-deficient form of G(13)alpha triggers PYK2 kinase activity and PYK2 tyrosine phosphorylation, and co-expression of the RGS domain of p115 RhoGEF inhibits both responses. Finally, we show that in vivo G(13)alpha, although not G(12)alpha, readily associates with PYK2. Thus, G-protein-coupled receptors via G(13)alpha activation can use PYK2 to link to SRE-dependent gene expression.  相似文献   

18.
Several lines of evidence now exist to suggest an interaction between the platelet-derived growth factor (PDGF) growth-stimulatory signal transduction pathway and the beta interferon (IFN-beta) growth-inhibitory signal transduction pathway. The most direct examples are inhibition of PDGF-mediated gene induction and mitogenesis by IFN-beta and the effects of activators and inhibitors of the IFN-inducible double-stranded RNA-dependent eIF2 kinase on expression of PDGF-inducible genes. To further investigate the nature of this PDGF/IFN-beta interaction, we selected BALB/c-3T3 cells for resistance to growth inhibition by IFN-beta and analyzed the phenotypes of resulting clonal lines (called IRB cells) with respect to PDGF signal transduction. Although selected only for IFN resistance, the IRB cells were found to be defective for induction of growth-related genes c-fos, c-myc and JE in response to PDGF. This block to signal transduction was not due to loss or inactivation of PDGF receptors, as immunoprecipitation of PDGF receptors with antiphosphotyrosine antibodies showed them to be present at equal levels in the BALB/c-3T3 and IRB cells and to be autophosphorylated normally in response to PDGF. Furthermore, treatment with other peptide growth factors (PDGF-AA, fibroblast growth factor, and epidermal growth factor) also failed to induce c-fos, c-myc, or JE expression in IRB cells. All of these growth factors, however, were able to induce another early growth-related gene, Egr-1. The block to signaling was not due to a defect in inositol phosphate metabolism, as PDGF treatment induced normal calcium mobilization and phosphotidylinositol-3-kinase activation in these cells. Activation of protein kinase C by phorbol esters did induce c-fos, c-myc, and JE in IRB cells, indicating that signalling pathways distal to this enzyme remained intact. We have previously shown that IFN-inducible enzyme activities, including double-stranded RNA-dependent eIF2 kinase and 2',5'-oligoadenylate synthetase, are normal in IRB cells. The finding that the induction of multiple growth-related genes by several independent growth factors is inhibited in these IFN-resistant cells suggests that there is a second messenger common to both growth factor and IFN signaling pathways and that this messenger is defective in these cells.  相似文献   

19.
The bipotential glial progenitor cells (O-2A progenitors), which during development of the rat optic nerve give rise to oligodendrocytes and type 2 astrocytes, are stimulated to divide in culture by platelet-derived growth factor (PDGF), and there is evidence that PDGF is important for development of the O-2A cell lineage in vivo. We have visualized PDGF mRNA in the rat optic nerve by in situ hybridization, and its spatial distribution is compatible with the idea that type 1 astrocytes are the major source of PDGF in the nerve. We can detect mRNA encoding the A chain, but not the B chain of PDGF in the brain and optic nerve, suggesting that the major form of PDGF in the central nervous system is a homodimer of A chains (PDGF-AA). PDGF-AA is a more potent mitogen for O-2A progenitor cells than is PDGF-BB, while the reverse is true for human or rat fibroblasts. Fibroblasts display two types of PDGF receptors, type A receptors which bind to all three dimeric isoforms of PDGF, and type B receptors which bind PDGF-BB and PDGF-AB, but have low affinity for PDGF-AA. Our results suggest that O-2A progenitor cells possess predominantly type A receptors, and proliferate during development in response to PDGF-AA secreted by type 1 astrocytes.  相似文献   

20.
The v-sis oncogene product p28v-sis and the platelet-derived growth factor (PDGF) B chain share 92% homology with each other and over 50% homology with the PDGF A chain. Exogenously added homodimers of PDGF A and PDGF B and of p28v-sis are potent mitogens but only PDGF B and p28v-sis induce transformation when endogenously expressed with a strong promoter. Because exogenous PDGF AA and PDGF BB both initiate a full mitogenic response, understanding the mechanisms underlying the difference in their transforming potential may clarify how growth factor genes act as oncogenes. In this work, we compared cells expressing high levels of PDGF A and v-sis. We observed that transformation by v-sis correlated directly with the rapid degradation (t1/2 approximately 20 min) of the alpha and beta PDGF receptors, with a failure of either the alpha or beta receptor to be fully processed and with the association of high levels of phosphatidylinositol (PI) 3-kinase with immunoprecipitates of the PDGF receptors. In contrast, in cells expressing essentially equal levels of PDGF A, transformation was not detected, alpha and beta PDGF receptor processing was normal, and association of PI 3-kinase with receptors in immunoprecipitates was not found above control values. The ability of v-sis to autoactivate PDGF receptors within processing compartments and to initiate activation of the PI 3-kinase signaling pathway coupled with the failure of PDGF A to activate its receptor intracellularly and to induce transformation when endogenously expressed at high levels suggests that the internal autoactivation of PDGF receptors may be essential for transformation by v-sis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号