首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Preparation and melting of single strand circular DNA loops.   总被引:5,自引:5,他引:0       下载免费PDF全文
A method for preparation of single strand DNA circles of almost arbitrary sequence is described. By ligating two sticky ended hairpins together a linear duplex is formed, closed at both ends by single stranded loops. The melting characteristics of such loops are investigated using optical absorbance and NMR. It is shown by comparison with the corresponding linear sequence (closed circle minus the end loops) that the effects of end fraying and the strand concentration dependence of the melting temperature are eliminated in the circular form. Over the concentration range examined (0.5 to 2.0 micromolar strands), the circular DNA has a monophasic melting curve, while the linear duplex is biphasic, probably due to hairpin formation. Since effects of duplex to single strands dissociation do not contribute to melting of the circular molecules (dumbells), these DNAs present a realistic experimental model for examining local thermal stability in DNA.  相似文献   

2.
Theoretical calculations predict that the differential melting curves for random polynucleotide sequences having lengths up to several tens of thousands of base pairs have a clear-cut fine structure. This structure appears in the form of multiple narrow peaks 0.3–0.4°C wide on the bell shaped main curve. The differential melting curves have different shapes for different specific sequences. The theory also predicts the disappearance of the fine structure when the length of the sequence increases and when circular, covalently closed DNA is considered instead of the open structure. The predictions of the theory were confirmed by the measurements of differential melting curves for open and covalently closed circular forms of DNA for PM2 phage (N = 104 base pairs) and also for other phage DNA's of different length: T7 (N = 3.8 × 104); SD (N = 9.2 × 104); T2 (N = 17 × 104). It was shown that the effect of fine structure results mainly from the cooperative melting out of DNA regions 300–500 base pairs long.  相似文献   

3.
Physical and topological properties of circular DNA   总被引:59,自引:1,他引:58  
Several types of circular DNA molecules are now known. These are classified as single-stranded rings, covalently closed duplex rings, and weakly bonded duplex rings containing an interruption in one or both strands. Single rings are exemplified by the viral DNA from φX174 bacteriophage. Duplex rings appear to exist in a twisted configuration in neutral salt solutions at room temperature. Examples of such molecules are the DNA''s from the papova group of tumor viruses and certain intracellular forms of φX and λ-DNA. These DNA''s have several common properties which derive from the topological requirement that the winding number in such molecules is invariant. They sediment abnormally rapidly in alkaline (denaturing) solvents because of the topological barrier to unwinding. For the same basic reason these DNA''s are thermodynamically more stable than the strand separable DNA''s in thermal and alkaline melting experiments. The introduction of one single strand scission has a profound effect on the properties of closed circular duplex DNA''s. In neutral solutions a scission appears to generate a swivel in the complementary strand at a site in the helix opposite to the scission. The twists are then released and a slower sedimenting, weakly closed circular duplex is formed. Such circular duplexes exhibit normal melting behavior, and in alkali dissociate to form circular and linear single strands which sediment at different velocities. Weakly closed circular duplexes containing an interruption in each strand are formed by intramolecular cyclization of viral λ-DNA. A third kind of weakly closed circular duplex is formed by reannealing single strands derived from circularly permuted T2 DNA. These reconstituted duplexes again contain an interruption in each strand though not necessarily regularly spaced with respect to each other.  相似文献   

4.
A melting experiment was performed on the whole set of populations of the replicative form of ?X174 DNA, which can be obtained treating this DNA with rat liver nicking-closing enzyme in the presence of ethidium bromide. Gel electrophoresis performed by loading the DNA samples at neutral and alkaline pH allows separation of these populations in discrete sets of bands, which can then be compared. The outcome of the experiments indicates that in the range of electrophoretic mobilities which can be explored, no band is formed exclusively by circular complementary strands which can be separated by alkaline denaturation. These results are compared with what would be expected if double-stranded closed circular DNA had structures other than the canonical double helix. Under nonrestrictive hypotheses, the experiments reported allow one to obtain a minimum estimate of the absolute value of the linking number of a closed circular double-stranded DNA: for native ?X174 RF DNA, the linking number appears to be greater than 12 (in absolute value). Some data on the electrophoretic mobility of denatured closed circular duplexes are reported, which still wait for a physicochemical interpretation.  相似文献   

5.
Following the initial report of the use of SYBR Green I for real-time polymerase chain reaction (PCR) in 1997, little attention has been given to the development of alternative intercalating dyes for this application. This is surprising considering the reported limitations of SYBR Green I, which include limited dye stability, dye-dependent PCR inhibition, and selective detection of amplicons during DNA melting curve analysis of multiplex PCRs. We have tested an alternative to SYBR Green I and report the first detailed evaluation of the intercalating dye SYTO9. Our findings demonstrate that SYTO9 produces highly reproducible DNA melting curves over a broader range of dye concentrations than does SYBR Green I, is far less inhibitory to PCR than SYBR Green I, and does not appear to selectively detect particular amplicons. The low inhibition and high melting curve reproducibility of SYTO9 means that it can be readily incorporated into a conventional PCR at a broad range of concentrations, allowing closed tube analysis by DNA melting curve analysis. These features simplify the use of intercalating dyes in real-time PCR and the improved reproducibility of DNA melting curve analysis will make SYTO9 useful in a diagnostic context.  相似文献   

6.
The sedimentation coefficients of closed circular Simian virus (SV40) DNA, phage PM2 DNA and animal mitochondrial DNAs in alkaline NaCl and alkaline CsCl were found to decrease by about 5% as the initial superhelix densities decreased from 0.0 to ?0.10, corresponding to a decrease in the degree of strand interwinding from 1.0 to 0.9 net turns per ten base pairs. The small dependence of the appropriately normalized sedimentation coefficients on the degree of strand interwinding is taken to indicate that fully titrated and denatured closed circular DNA is highly supercoiled in a positive sense. This supercoiling results from the spontaneous decrease in the number of secondary turns in the no longer ordered pairs of polynucleotide strands.The measured sedimentation coefficients form a smoothly connected monotonie curve when plotted along with the sedimentation coefficients in alkali (Sebring et al., 1971) of parental closed circles derived from closed circular SV40 DNA replicating intermediates. These DNAs have degrees of strand interwinding that range from 0.6 to 0.15.The possibility raised by Paoletti &; LePecq (1971) that closed circular duplex DNAs contain positive supercoils, i.e. have degrees of strand interwinding greater than 1.0, has been ruled out in a series of ethidium bromide titrations of partially replicated mitochondrial DNA before and after removal of the progeny strand. More ethidium bromide was required in the latter case for relaxation, a result which shows that intercalated ethidium and a displacing strand act on the duplex in the same way, and that both unwind the duplex. This result requires the supercoils of naturally closed circular DNAs to be negative.  相似文献   

7.
8.
The polymerase chain reaction is a powerful technique used to amplify nucleic acids in vitro . The reaction produces linear products, and as of yet, closed circular products have not been possible. Since the replicatively competent form of many DNA molecules is the closed circular form, it would be adventitious to amplify closed circular DNA as closed circular molecules. Until now, these molecules could only be amplified in vivo in appropriate host cells. Here, we describe an in vitro procedure, ligation-during-amplification (LDA), for selective amplification of closed circular DNA using sequence-specific primers. LDA is useful for site-directed mutagenesis, mutation detection, DNA modification, DNA library screening and circular DNA production.  相似文献   

9.
We have determined the gel electrophoretic behavior of closed circular plasmid pSM1 DNA (5420 bp) as a function of both temperature and of linking number (Lk). At temperatures below 37 degrees, the electrophoretic mobility first increases, then becomes constant as Lk is decreased below that of the relaxed closed DNA. As the temperature is increased above 37 degrees the electrophoretic mobility first increases as Lk decreases and then varies in a cyclic manner with further decreases in Lk. As the temperature is increased over the range 37 degrees - 65 degrees the cyclic behavior is manifested at progressively smaller decreases in Lk and the amplitude of the cycles increases. We interpret the results in terms of the early melting of superhelical DNA, in which the free energy associated with superhelix formation is progressively transferred to local denaturation. Using a two state approximation, we estimate the free energy change in the first cyclic transition to be 35 Kcal/mole DNA at 37 degrees and to decrease linearly with temperature. The free energy becomes equal to zero at a temperature of 71.6 degrees, which lies within 3 degrees of the melting temperature for the corresponding nicked circular DNA. From the slope of this relationship we estimate the apparent entropy and enthalpy of the first mobility transition to be 6.0 Kcal/mole base pair and 17.3 cal/mole base pair/degree, values consistent with duplex melting.  相似文献   

10.
A new technique has been developed for the rapid isolation of covalently closed circular DNA molecules. The procedure is a selective extraction based on differences in the partitioning of covalently closed circular DNA molecules and noncovalently closed species between phenol and water at acid pH and low ionic strength. Under the conditions described, linear as well as nicked circular DNA is extracted into phenol, while covalently closed circular DNA molecules remain in the water phase. The method permits the quantitative isolation of covalently closed circular DNA from either total cellular DNA or partially purified preparations, to a degree of purity comparable with buoyant density procedures.  相似文献   

11.
The sedimentation coefficient and intrinsic viscosity of nicked and closed circular PM2 bacteriophage DNA have been measured as a function of pH in the alkaline region. A gradual increase in the sidimentation coefficient, and a corresponding decrease in the intrinsic viscosity, are observed for the superhelical (closed) circle in the pH region from 10.5 to about 10.9. This has been tentatively interpreted in terms of the known dependence of sedimentation coefficient upon the number of superhelical turns. At slightly higher pH values, the curve passes through the minimum (sedimentation coefficient) and maximum (intrinsic viscosity) expected when the superhelical turns present at neutral pH are unwound by partial alkaline denaturation. Sedimentation studies of the relaxed (nicked) circular species have revealed the existence of DNA forms in the pH region from 11.27 to 11.37 which sediment considerably faster than the closed circle in the same pH region. These have been identified as partially denatured nicked circles, in which varying fractions of the duplex structure have undergone alkaline denaturation, but strand separation has not yet occurred. Varying fractions of a slower species, either undenatured or completely denatured nicked circles, are also observed in some of these experiments. A corresponding result is observed in the intrinsic viscosity vs. pH curve. When nicked circular PM2 DNA is exposed to various alkaline pH's, rapidly neutralized, and sedimented at neutral pH, the expected sharp transition from native to denatured (strand-separated) molecules is seen. However, a very narrow pH range is noted in which native and denatured forms coexist in a single experiment. The above experiments carried out upon the closed form also reveal a narrow pH range in which the bulk of the transition from native closed circles to the collapsed cyclic coil takes place, in acccord with an earlier study on a different DNA. This transition is shown never to be completely effected, however, as there is a fraction (7–8%)of the closed circles which renature to the native form, regardless of the alkaline pH employed. This same phenomenon was not observed in the case of artificially closed λb2b5c DNA circles. Possible explanations for some of the above results are discussed.  相似文献   

12.
We have developed a modified isolation procedure that yields kinetoplast DNA networks containing more than 90% closed circular DNA, as judged by two criteria: (a) In 0.15 M NaCl/0.015 M sodium citrate (pH 7.0), less than 10% of the intact kinetoplast DNA melts in the temperature region of sonicated kinetoplast DNA. In 7.2 M NaCl04 the kinetoplast DNA melts with a Tm 26 degrees C higher than sonicated kinetoplast DNA. Even after complete melting in 7.2 M NaClO4 at 90 degrees C, the network remains intact, as judged by regain of hypochromicity on cooling and analysis in CsCl containing propidium dixodide. (b) In alkaline sucrose gradients more than 90% of the kinetoplast DNA sediments in a single peak. 2. In CsCl gradients containing ethidium bromide of propidium diiodide intact kinetoplast DNA gives a single uni-modal band showing an extremely restricted dye uptake. From the position of the bank relative to the bands of PM2 DNA, the superhelix density of these networks is calculated to be +3.9 twists per 1000 base pairs. The superhelix density of closed mini-circles, efficiently liberated from the networks by shear in a French press, is -0.5 twists per 1000 base pairs. We attribute the high superhelix density (the highest yet observed in any DNA) of intact networks to their compact, highly catenated structure, leading to an additional constraint on dye uptake, superimposed on the restriction due to closed circularity.  相似文献   

13.
The melting curve for covalently closed supercoiled DNA has been studied by assuming the existence of cruciforms as significant structural perturbations in the pre-melting region. The statistical mechanical treatment used incorporates these cruciform structures through an appropriate sequence generating function. The variation of the effective hydrogen bond energy with temperature is taken into account by an empirical procedure. The results obtained are in close agreement with the corresponding experimental data in TEA solution where the effect of heterogeneity of the base pairs is minimized.  相似文献   

14.
Aqueous RbTCA permits the buoyant banding of both native and denatured DNA at room temperature and neutral pH. A unique property of this solvent is the bouyant resolution of closed circular, underwound DNA (I) from the corresponding nicked (II) species. Conditions are reported here in which PM-2 DNA I is physically resolved from native PM-2 DNA II, the buoyant separation being 1.27 mq/ml in 3.3 M RbTCA at 25 degrees C. The separation between nicked and closed DNAs increases with temperature up to 35.5 degrees C, at which PM-2 DNA II cooperatively melts and subsequently pellets. The isothermal buoyant density of a cloed DNA increases linearly as the linking number (Lk) of the closed DNA decreases. The early melting of closed DNA may be monitored with high precision by buoyant banding in RbTCA, it being possible to detect the disruption of as few as 40 base pairs in PM-2 DNA (10,000 base pairs). The constraint that the linking number be conserved in closed DNA requires that a change in duplex winding be accompanied by a compensating change in supercoiling. We estimate the linking number deficiency of PM-2 DNA I to be 0.094 turns per decibase pair. This result permits the estimation of the EtdBr unwinding angle, phi, by comparison with alternative determinations of the linking number deficiency which depend upom the value of phi. The result obtained here is that phi = 27.7 degrees +/- 0.5 degrees and is approximately independent of temperature over the range 15 degrees-35 degrees.  相似文献   

15.
F K Yoshimura  R A Weinberg 《Cell》1979,16(2):323-332
Both linear (form III) and closed circular (form I) viral DNAs obtained from mouse cells infected with Moloney murine leukemia virus were cleaved by Sal I, Sma I, Bam HI and Pst I restriction endonucleases. DNA fragments generated by these cleavages were ordered with respect to the 5' and 3' ends of the RNA genome by several techniques, including comparisons of the DNA fragments from cleavages of the linear and closed circular forms, double digestions using different combinations of enzymes and the use of an RNA probe specific for the 3' end. DNA from Hirt extractions of infected cells yielded a discrete species of linear viral DNA whose size was determined by agarose gel electrophoresis to be 5.7 x 10(6) daltons. In the course of characterizing the closed circular DNA, we observed two form I DNA molecules. The larger molecule was the same size as the linear DNA. The second molecule migrated faster on agarose gels and was the predominant species of the two closed circular DNAs. Using the restriction endonuclease maps which we derived, we demonstrate that this novel form I DNA is a smaller homogeneous species of viral DNA, missing about 600 nucleotides found in the linear and larger closed circular DNA molecules. We have localized the site of this missing DNA piece to be at either one or both ends of the linear viral DNA.  相似文献   

16.
We have used temperature gradient gel electrophoresis (TGGE) to measure the progress of local denaturation in closed circular topoisomer DNA as a function of temperature and superhelicity (σ). We describe the versatility of this method as a tool for detecting various conformational modifications of plasmid DNAs. The early melting temperature of a structural transition for any topoisomer is dependent on the value of superhelicity. Supercoiled topoisomers represent a system of molecules that is sensitive to changes in temperature. We show that the topoisomer with the highest absolute value of superhelicity melts earlier than topoisomers with lower values. Thermal sensitivity of highly supercoiled plasmids could play a biologically important role in regulation of replication and expression in cells under thermal stress. The estimated melting temperature for plasmids with σ < –0.05 is very significant because these temperatures for early melting are below physiological temperatures.  相似文献   

17.
In this paper, we present a distributed control strategy, enabling agents to converge onto and travel along a consensually selected curve among a class of closed planar curves. Individual agents identify the number of neighbors within a finite circular sensing range and obtain information from their neighbors through local communication. The information is then processed to update the control parameters and force the swarm to converge onto and circulate along the aforementioned planar curve. The proposed mathematical framework is based on stochastic differential equations driven by white Gaussian noise (diffusion processes). Using this framework, there is maximum probability that the swarm dynamics will be driven toward the consensual closed planar curve. In the simplest configuration where a circular consensual curve is obtained, we are able to derive an analytical expression that relates the radius of the circular formation to the agent’s interaction range. Such an intimate relation is also illustrated numerically for more general curves. The agent-based control strategy is then translated into a distributed Braitenberg-inspired one. The proposed robotic control strategy is then validated by numerical simulations and by implementation on an actual robotic swarm. It can be used in applications that involve large numbers of locally interacting agents, such as traffic control, deployment of communication networks in hostile environments, or environmental monitoring.  相似文献   

18.
Supercoiling of a closed circular DNA rod may result from an application of terminal twist to the DNA rod by cutting the rod, rotating one of the cut faces as the other being fixed and then sealing the cut. According to White's formula, DNA supercoiling is probably accompanied by a writhe of the DNA axis. Deduced from the elastic rod model for DNA structure, an intrinsically straight closed circular DNA rod does not writhe as subject to a terminal twist, until the number of rotation exceeds a rod-dependent threshold. By contrast, a closed circular DNA rod with intrinsic curvature writhes instantly as subject to a terminal twist. This noteworthy character in fact belongs to many intrinsically curved DNA rods. By solving the dynamic equations, the linearization of the Euler–Lagrange equations governing intrinsically curved DNA rods, this paper shows that almost every clamped-end intrinsically curved DNA rod writhes instantly when subject to a terminal twist (clamped-end DNA rods include closed circular DNA rods and topological domains of open DNA rods). In terms of physical quantities, the exceptions are identified with points in ℝ6 whose projections onto ℝ5 (through ignoring the total energy density of a rod) form a subset of a quadratic hypersurface. This paper also suggests that the terminal twist induced writhe is due to the elasticity and the clamped-end boundary conditions of the DNA rods. To my sister for her 50th birthday.  相似文献   

19.
Deoxyribonucleic acid (DNA) from the covalently closed circular DNA molecules of Pseudomonas phage PM2 was found to enter normally transformable cells of Streptococcus pneumoniae as readily as linear bacterial DNA. In a mutant of S. pneumoniae that lacks a membrane nuclease and is defective in DNA entry, as many molecules of PM2 DNA as of linear DNA were bound on the outside of cells at equivalent DNA concentrations. Bound DNA suffered single-strand breaks, but circular DNA with preexisting breaks was bound no better than closed circles. In the presence of divalent cations, DNA bound to cells of a leaky nuclease mutant showed double-strand breaks. At least the majority of PM2 DNA that entered normal cells was single stranded. These results are consistent with a mechanism for DNA entry in which DNA is first nicked on binding, then a double-strand break is formed by cleavage of the complementary strand, and continued processive action of the membrane nuclease facilitates entry of the originally nicked strand. Although the bulk of circular donor DNA appeared to enter in this way, the results do not exclude entry of a small amount of donor DNA in an intact form.  相似文献   

20.
We have measured the specific viscosity of closed circular PM2 DNA in the presence of concentrations of ethidium bromide ranging up to 5 mg/ml. Both native viral PM2 DNA I and enzymatically prepared relaxed, closed circular PM2 DNA I0 exhibit a complex dependence of the specific viscosity upon the extent of supercoiling. As the number of superhelical turns is increased in the positive sense from zero, the viscosity first decreases to a minimum, then passes through a secondary maximum, and eventually again increases as the dye-induced duplex unwinding proceeds. In the case of DNA I, a corresponding behavior is mirrored in the negative sense as dye is removed from the principal viscometric maximum (complete relaxation of the DNA by dye). The shape of the curve relating specific viscosity to extent to supercoiling is similar for superhelical DNAs of either handedness, a result which we interpret to mean that the influence of any regions of special secondary structure (such as denatured loops) upon the viscosity is minimal. At very high dye concentrations the specific viscosity decreases dramatically. This effect might arise either from intermolecular aggregation or from a dye-induced collapse in the DNA secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号