首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Variants of the carboxyl-terminal KDEL sequence direct intracellular retention   总被引:13,自引:0,他引:13  
Soluble proteins which reside in the lumen of the endoplasmic reticulum share a common carboxyl-terminal tetrapeptide Lys-Asp-Glu-Leu (KDEL). Addition of the tetrapeptide to a normally secreted protein is both necessary and sufficient to cause retention in the endoplasmic reticulum. In order to characterize the critical residues in the KDEL signal, cDNAs encoding proneuropeptide Y (pro-NPY) with the 4-amino acid carboxyl-terminal extension KDEL or a series of KDEL variants were expressed in the AtT-20 cell line. AtT-20 cells, a mouse anterior pituitary corticotrope cell line, synthesize, process, and secrete the pro-ACTH/endorphin precursor. Since post-translational processing in AtT-20 cells has been extensively characterized, it provides a model system in which the processing of a foreign peptide precursor (pro-NPY) and the endogenous precursor (pro-ACTH/endorphin) can be compared. Altered cDNAs encoding pro-NPY with KDEL, DKEL, RDEL, KNEL, KDQL, or KDEA at the COOH terminus were used to generate stable AtT-20 cell lines. The processing of pro-NPY to neuropeptide Y and the carboxyl-terminal peptide was studied using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, tryptic peptide mapping, and radiosequencing. Addition of the tetrapeptides KDEL, DKEL, RDEL, or KNEL to the COOH terminus of the neuropeptide Y precursor, a peptide hormone normally processed and secreted from neuronal cells, caused complete intracellular retention of the unprocessed prohormone in AtT-20 cells. However, KDQL and KDEA-extended pro-NPY molecules were processed and secreted like wild-type pro-NPY when expressed in AtT-20 cells. The secretion of proNPY-derived peptides in these cell lines paralleled secretion of endogenous pro-ACTH/endorphin-derived products under both basal and stimulated conditions. These mutagenesis studies demonstrate that variants of the KDEL retention signal can direct intracellular retention.  相似文献   

2.
3.
Trigger factor, a ribosome-associated chaperone and peptidyl-prolyl cis-trans isomerase (PPIase), is essential for the secretion and maturation of the cysteine protease of the pathogenic gram-positive bacterium Streptococcus pyogenes. In the absence of trigger factor, the nascent protease polypeptide is not targeted to the secretory pathway. Some partial-function mutations restore targeting. However, the secreted protease does not efficiently mature into an enzymatically active form, suggesting that trigger factor has an additional role in protease biogenesis. Here, we show that, while not required for targeting, the PPIase activity of trigger factor is essential for maturation of the protease following its secretion from the bacterial cell. Site-specific mutations introduced into ropA, the gene which encodes trigger factor in S. pyogenes, produced mutant proteins deficient in PPIase activity. When these mutant alleles were used to replace the wild-type gene on the streptococcal chromosome, analysis of protease biogenesis revealed that, although the protease was secreted normally, it did not efficiently mature to an active form. Furthermore, mutation of a single proline residue in the protease prodomain suppressed the requirement for PPIase activity, suggesting that this residue is the target of trigger factor. These data support a model in which trigger factor-mediated prolyl isomerization influences the conformation of the prodomain, which in turn directs the protease into one of several alternative folding pathways.  相似文献   

4.
5.
Clostridium difficile is a nosocomial pathogen involved in antibiotic-associated diarrhea. C. difficile expresses a cysteine protease, Cwp84, which has been shown to degrade some proteins of the extracellular matrix and play a role in the maturation of the precursor of the S-layer proteins. We sought to analyze the localization and the maturation process of this protease. Two identifiable forms of the protease were found to be associated in the bacteria: a form of ~80 kDa and a cleaved one of 47 kDa, identified as the mature protease. They were found mainly in the bacterial cell surface fractions and weakly in the extracellular fraction. The 80-kDa protein was noncovalently associated with the S-layer proteins, while the 47-kDa form was found to be tightly associated with the underlying cell wall. Our data supported that the anchoring of the Cwp84 47-kDa form is presumably due to a reassociation of the secreted protein. Moreover, we showed that the complete maturation of the recombinant protein Cwp84(30-803) is a sequential process beginning at the C-terminal end, followed by one or more cleavages at the N-terminal end. The processing sites of recombinant Cwp84 are likely to be residues Ser-92 and Lys-518. No proteolytic activity was detected with the mature recombinant protease Cwp84(92-518) (47 kDa). In contrast, a fragment including the propeptide (Cwp84(30-518)) displayed proteolytic activity on azocasein and fibronectin. These results showed that Cwp84 is processed essentially at the bacterial cell surface and that its different forms may display different proteolytic activities.  相似文献   

6.
The SspB cysteine protease of Staphylococcus aureus is expressed in an operon, flanked by the sspA serine protease, and sspC, encoding a 12.9-kDa protein of unknown function. SspB was expressed as a 40-kDa prepropeptide pSspB, which did not undergo autocatalytic maturation. Activity of pSspB was reduced compared with 22-kDa mature SspB, but it was equivalent to mature SspB after incubation with SspA, which specifically removed the pSspB N-terminal propeptide. SspC abrogated the activity of pSspB when incubated in a 1:1 complex but had no effect on SspA or papain. Activity of the pSspB.SspC complex was restored when incubated with SspA, and SspC was cleaved by SspA but not pSspB. Thus, SspC maintains pSspB as an inert zymogen, and SspA is required for removal of the propeptide and inactivation of SspC. Like the papain protease family, SspB cleaved substrates with a hydrophobic amino acid at P2 but had a strong preference for arginine at P1. It did not cleave casein, serum albumin, IgG, or IgA, but it promoted detachment of cultured keratinocytes and cleaved fibronectin and fibrinogen at sites recognized by urokinase plasminogen activator and plasmin, respectively. It also processed high molecular weight kininogen in a manner resembling plasma kallikrein. Thus, SspB exhibits a novel maturation mechanism and mimics the specificity of plasma serine proteases.  相似文献   

7.
8.
The streptococcal pyrogenic exotoxin B (SpeB) is an important factor in mediating Streptococcus pyogenes infections. SpeB is the zymogen of the streptococcal cysteine protease (SCP), of which relatively little is known regarding substrate specificity. To investigate this aspect of SCP function, a series of internally quenched fluorescent substrates was designed based on the cleavage sites identified in the autocatalytic processing of SpeB to mature SCP. The best substrates for SCP contain three amino acids in the nonprimed position (i.e. AIK in P(3)-P(2)-P(1)). Varying the length of the substrate on the primed side of the scissile bond has a relatively lower effect on activity. The highest activity (k(cat)/K(M) = 2.8 +/- 0.6 (10(5) x m(-1)s(-1)) is observed for the pentamer 3-aminobenzoic acid-AIKAG-3-nitrotyrosine, which spans subsites S(3) to S(2)' on the enzyme. High pressure liquid chromatography and mass spectrometry analyses show that the substrates are cleaved at the site predicted from the autoprocessing experiments. These results show that SCP can display an important level of endopeptidase activity. Substitutions at position P(2) of the substrate clearly indicate that the S(2) subsite of SCP can readily accommodate substrates containing a hydrophobic residue at that position and that some topological preference exists for that subsite. Substitutions in positions P(3), P(1), and P(1)' had little or no effect on SCP activity. The substrate specificity outlined in this work further supports the similarity between SCP and the cysteine proteases of the papain family. From the data regarding the identified or proposed natural substrates for SCP, it appears that this substrate specificity profile may also apply to the processing of mammalian and streptococcal protein targets by SCP.  相似文献   

9.
The cysteine protease known as "prohormone thiol protease" (PTP) has been identified as a major proenkephalin processing enzyme in secretory vesicles of adrenal medulla (known as chromaffin granules). This study provides the first demonstration that PTP exists as a multicatalytic cysteine protease complex that can be activated by endogenous glutathione present in chromaffin granules. The high molecular mass nature of PTP, of approximately 185 kDa, was demonstrated by elution of a single peak of 35S-enkephalin precursor cleaving activity by Sephacryl S200 gel filtration chromatography and by a single band of 35S-enkephalin precursor cleaving activity detected on radiozymogram gels under native buffer conditions. Importantly, when 0.1% SDS was included in radiozymogram gels, PTP activity was resolved into three bands of proteolytic activity with apparent molecular masses of 88, 81, and 61 kDa. These activities were all cysteine proteases, since they were inhibited by the cysteine protease inhibitor E-64c but not by pepstatin A or EDTA that inhibit aspartyl protease and metalloprotease, respectively. Purification of native PTP by preparative gel electrophoresis indicated that PTP was composed of four polypeptides of 66, 60, 33, and 29 kDa detected on SDS-PAGE gels. These four protein subunits accounted for the three catalytic activities of PTP, as demonstrated on 35S-enkephalin precursor radiozymogram gels. Results also indicated that the electrophoretic mobilities of the four subunits differed under reducing compared to nonreducing conditions. The multicatalytic activities of the PTP complex all require reducing conditions for activity, which can be provided by endogenous reduced glutathione in chromaffin granules. These novel findings provide the first evidence for a role of a multicatalytic cysteine protease complex, PTP, in chromaffin granules that may be involved in the proteolytic processing of proenkephalin and perhaps other precursors into active neuropeptides.  相似文献   

10.
A simultaneous increase is found in the level of protein synthesis and the major regulatory glycolytic enzyme, phosphofructokinase (PFK), in early phytohemagglutinin exposure of human lymphocytes. The induction of DNA synthesis is demonstrated to be a much later event. This indicates that the increase of glycolysis in mitogen-stimulated cells precedes cell proliferation, but occurs simultaneously with a general increase in protein synthesis. Chemical inhibitors are used to clarify the interrelationship of protein synthesis, glycolytic enzymes levels, and DNA synthesis. Inhibition of protein synthesis with cycloheximide in the mitogen-exposed lymphocytes prevents any increase in PFK levels, implicating protein synthesis as a cause for the increased glycolysis. Cycloheximide also prevents entry into S phase in mitogen-stimulated lymphocytes which may be due to inhibition of the synthesis of enzymes necessary for DNA synthesis, such as DNA polymerase. Aphidicolin, a specific DNA polymerase inhibitor, is found to have no effect on the increase in protein synthesis and PFK levels that precedes DNA synthesis. The increase in glycolysis in mitogen-stimulated lymphocytes occurs simultaneously with, and is dependent upon, increased protein synthesis, and precedes DNA synthesis and lymphocyte proliferation; thus, the high glycolytic rate of mitogen-stimulated cells is not merely a secondary manifestation of rapid cell proliferation as has been previously reported.  相似文献   

11.
A recent report sought to demonstrate that acetylation of specific lysines within integrase (IN) by the histone acetyltransferase (HAT) p300 regulates human immunodeficiency virus type 1 (HIV-1) integration and is essential for viral replication (A. Cereseto, L. Manganaro, M. I. Gutierrez, M. Terreni, A. Fittipaldi, M. Lusic, A. Marcello, and M. Giacca, EMBO J. 24:3070-3081, 2005). We can corroborate the efficient and specific acetylation of the IN carboxyl-terminal domain (CTD) (amino acids 212 to 288) by p300 using purified recombinant components. Although arginine substitution mutagenesis of the isolated CTD confirms that the majority of p300 acetylation occurs at lysine residues 264, 266, and 273, the pattern of acetylation is not uniform and a hierarchy of reactivity can be established. Several combinatorial mutations of the CTD lysines modified by p300 in vitro were reconstructed into an otherwise infectious proviral plasmid clone and examined for viral growth and frequency of productive chromosomal integration. In contrast to the findings of Cereseto and coworkers, who used epitope-tagged viruses for their experiments, we find that an untagged mutant virus, IN K(264/266/273)R, is fully replication competent. This discrepancy may be explained by the use of an acidic epitope tag placed at the extreme carboxyl terminus of integrase, near the target site for acetylation. Although the tagged, wild-type virus is viable, the combination of this epitope tag with the RRR substitution mutation results in a replication-defective phenotype. Although IN belongs to the very small set of nonhistone proteins modified by HAT-mediated activity, an obligate role for acetylation at the reactive CTD lysines in HIV-1 IN cannot be confirmed.  相似文献   

12.
A papain-type cysteine endopeptidase with a molecular mass of 35 kDa for the mature enzyme, was purified from germinating castor bean (Ricinus communis L.) endosperm by virtue of its capacity to process the glyoxysomal malate dehydrogenase precursor protein to the mature subunit in vitro (C. Gietl et al., 1997, Plant Physiol 113: 863–871). The cDNA clones from endosperm of germinating seedlings and from developing seeds were isolated and sequence analysis revealed that a very similar or identical peptidase is synthesised in both tissues. Sequencing established a presequence for co-translational targeting into the endoplasmic reticulum, an N-terminal propeptide and a C-terminal KDEL motif for the castor bean cysteine endopeptidase precursor. The 45-kDa pro-enzyme stably present in isolated organelles was enzymatically active. Immunocytochemistry with antibodies raised against the purified cysteine endopeptidase revealed highly specific labelling of ricinosomes, organelles which co-purify with glyoxysomes from germinating Ricinus endosperm. The cysteine endopeptidase from castor bean endosperm, which represents a senescing tissue, is homologous to cysteine endopeptidases from other senescing tissues such as the cotyledons of germinating mung bean (Vigna mungo) and vetch (Vicia sativa), the seed pods of maturing French bean (Phaseolus vulgaris) and the flowers of daylily (Hemerocallis sp.). Received: 20 December 1997 / Accepted: 18 March 1998  相似文献   

13.
Programmed cell death (PCD) in plants is a prerequisite for development as well as seed and fruit production. It also plays a significant role in pathogen defense. A unique group of papain-type cysteine endopeptidases, characterized by a C-terminal endoplasmic reticulum (ER) retention signal (KDEL CysEP), is involved in plant PCD. Genes for these endopeptidases have been sequenced and analyzed from 25 angiosperms and gymnosperms. They have no structural relationship to caspases involved in mammalian PCD and homologs to this group of plant cysteine endopeptidases have not been found in mammals or yeast. In castor beans (Ricinus communis), the CysEP is synthesized as pre-pro-enzyme. The pro-enzyme is transported to the cytosol of cells undergoing PCD in ER-derived vesicles called ricinosomes. These vesicles release the mature CysEP in the final stages of organelle disintegration triggered by acidification of the cytoplasm resulting from the disruption of the vacuole. Mature CysEP digests the hydroxyproline (Hyp)-rich proteins (extensins) that form the basic scaffold of the plant cell wall. The KDEL CysEPs accept a wide variety of amino acids at the active site, including the glycosylated Hyp residues of the extensins. In Arabidopsis, three KDEL CysEPs (AtCEP1, AtCEP2 and AtCEP3) are expressed in tissues undergoing PCD. In transgenic Arabidopsis plants expressing β-glucuronidase under the control of the promoters for these three genes, cell- and tissue-specific activities were mapped during seedling, flower and seed development. KDEL CysEPs participate in the collapse of tissues in the final stage of PCD and in tissue re-modeling such as lateral root formation.  相似文献   

14.
It is generally accepted that spermatozoa become functionally mature during epididymal transit. The objective of this study was to determine whether the cellular location of equine PH-20 is modified during epididymal transit and, if so, the mechanism for such modification. Sperm were isolated from caput and cauda epididymal regions from stallions undergoing castration (n = 7) and used as whole sperm cell or subjected to nitrogen cavitation for isolation of plasma membrane proteins. Both caput and cauda sperm and sperm protein extracts were subjected to N-deglycosylation, O-deglycosylation, or trypsinization. The SDS-PAGE and Western blot analysis using a polyclonal anti-equine PH-20 IgG were performed in sperm extracts, and indirect immunofluorescence on whole sperm was also performed to determine the cellular distribution of plasma membrane PH-20 following similar treatments (deglycosylation or trypsinization). Hyaluronan substrate gel electrophoresis was performed to detect hyaluronidase activity in SDS-PAGE proteins. Western blots revealed significant differences in electrophoretic migration of PH-20 proteins from caput and cauda epididymal sperm. No effect was seen from deglycosylation treatments on the Western blot pattern; caput protein extracts exposed to trypsin showed the same band pattern as extracts from the cauda epididymis. N-deglycosylation resulted in the loss of hyaluronidase activity of sperm from both epididymal regions, whereas O-deglycosylation or trypsinization did not affect hyaluronidase activity. In caput epididymal sperm, the PH-20 protein is distributed over the entire sperm head; in cauda epididymal sperm, it is restricted to the postacrosomal region. No effect from deglycosylation on the cellular distribution of PH-20 was observed; however, treatment with trypsin changed the cellular distribution of PH-20 in caput sperm similar to that of the distribution of cauda sperm. These results suggest that PH-20 distribution during epididymal maturation is dependent on proteolytic trypsin-like mechanisms and, possibly, on complementary membrane-associated factors.  相似文献   

15.
The Kex2 protease of the yeast Saccharomyces cerevisiae is a prototypical eukaryotic prohormone-processing enzyme that cleaves precursors of secreted peptides at pairs of basic residues. Here we have established the pathway of posttranslational modification of Kex2 protein using immunoprecipitation of the biosynthetically pulse-labeled protein from a variety of wild-type and mutant yeast strains as the principal methodology. Kex2 protein is initially synthesized as a prepro-enzyme that undergoes cotranslational signal peptide cleavage and addition of Asn-linked core oligosaccharide and Ser/Thr-linked mannose in the ER. The earliest detectable species, I1 (approximately 129 kD), undergoes rapid amino-terminal proteolytic removal of a approximately 9-kD pro-segment yielding species I2 (approximately 120 kD) before arrival at the Golgi complex. Transport to the Golgi complex is marked by extensive elaboration of Ser/Thr-linked chains and minor modification of Asn-linked oligosaccharide. During the latter phase of its lifetime, Kex2 protein undergoes a gradual increase in apparent molecular weight. This final modification serves as a marker for association of Kex2 protease with a late compartment of the yeast Golgi complex in which it is concentrated about 27-fold relative to other secretory proteins.  相似文献   

16.
17.
The maize cysteine protease complex, which required SDS for its activation in vitro, is a 179 kDa trimeric complex (P-I)3 of a cysteine protease (P) [EC 3.4.22] and a cysteine protease inhibitor (I), cystatin [Yamada et al. (1998) Plant Cell Physiol. 39: 106, Yamada et al. (2000) Plant Cell Physiol. 41: 185]. Here, we show the mechanism of the SDS-dependent activation of the trimeric (P-I) complex and stabilization of the activated protease by its specific substrates. The cystatin-free cysteine protease isolated by preparative SDS-PAGE was still specifically activated by SDS, and its profile of SDS-dependency was exactly the same as that of the trimeric (P-I) complex. It is, therefore, evident that an SDS-dependent conformational change of the protease itself, rather than the release of cystatin from the complex, is crucial for the activation. Pre-treatment analysis with SDS revealed that SDS was required for the initiation of the activation of the trimeric (P-I) complex. Furthermore, we found that once the protease was activated, if there was no substrate, it was rapidly inactivated under optimum conditions of proteolysis, and showed that such inactivation was not due to autolysis of the protease. In contrast, addition of specific substrates prevented the inactivation, and thus we presumed that the activity of the cysteine protease is regulated by both activation by conformational change and rapid inactivation after consumption of substrates.  相似文献   

18.
Human cathepsin X is one of many proteins discovered in recent years through the mining of sequence databases. Its sequence shows clear homology to cysteine proteases from the papain family, containing the characteristic residue patterns, including the active site. However, the proregion of cathepsin X is only 38 residues long, the shortest among papain-like enzymes, and the cathepsin X sequence has an atypical insertion in the regions proximal to the active site. This protein was recently expressed and partially characterized biochemically. Unlike most other cysteine proteases from the papain family, procathepsin X is incapable of autoprocessing in vitro but can be processed under reducing conditions by exogenous cathepsin L. Atypically, the mature enzyme is primarily a carboxypeptidase and has extremely poor endopeptidase activity. We have determined the three-dimensional structure of the procathepsin X at 1.7 A resolution. The overall structure of the mature enzyme is characteristic for enzymes of the papain superfamily, but contains several novel features. Most interestingly, the short proregion binds to the enzyme with the aid of a covalent bond between the cysteine residue in the proregion (Cys10p) and the active site cysteine residue (Cys31). This is the first example of a zymogen in which the inhibition of enzyme's proteolytic activity by the proregion is achieved through a reversible covalent modification of the active site nucleophile. Such mode of binding requires less contact area between the proregion and the enzyme than observed in other procathepsins, and no auxiliary binding site on the enzyme surface is used. A three-residue insertion in a highly conserved region, just prior to the active site cysteine residue, confers a significantly different shape on the S' subsites, compared to other proteases from papain family. The 3D structure provides an explanation for the rather unusual carboxypeptidase activity of this enzyme and confirms the predictions based on homology modeling. Another long insertion in the cathepsin X amino acid sequence forms a beta-hairpin pointing away from the active site. This insertion, thought to be an equivalent of cathepsin B occluding loop, is located on the side of the protein, distant from the substrate binding site.  相似文献   

19.
A stable ozonide derived from Cbz-L-Phe accomplishes rapid and stoichiometric inhibition of papain at less than 100 microM concentration under conditions where formation of the corresponding aldehyde is negligible. Oxidation of the active site thiolate by the bound peroxide is believed to lead to formation of an inactive sulfenate or sulfenic acid. Reduction of the ozonide in excess DMSO provides a convenient method for in situ generation of a peptide aldehyde.  相似文献   

20.
In 38C B lymphocytes, membrane IgM is expressed on the surface, whereas secretory IgM (sIgM) is rapidly degraded. Here, we localize this degradation and characterize the proteases involved in this process. Upon treatment with brefeldin A, degradation of sIgM in 38C cells was strongly inhibited, as was secretion from the sIgM-secreting D2 hybridoma. Moreover, the brefeldin A-induced Golgi resorption resulted in galactosylation of sIgM and partial resistance to endoglycosidase H. However, sIgM avoided degradation neither due to modified terminal glycosylation nor as a consequence of the brefeldin A-induced altered milieu of the endoplasmic reticulum. When these modifications were prevented by inhibiting retrograde transport with nocodazole or by abrogating terminal glycosylation with swainsonine, sIgM was still rescued from degradation. The unaffected breakdown in the presence of nocodazole also argued against recycling of sIgM to be degraded in the endoplasmic reticulum. Furthermore, upon removal of brefeldin A, degradation of galactosylated sIgM resumed in 38C cells, as did secretion from D2 cells. These results indicate that functional export of proteins from the endoplasmic reticulum is a prerequisite for sIgM degradation. Biochemical characterization of this novel postendoplasmic reticulum/pre-trans-Golgi proteolytic pathway included application of inhibitors to a broad spectrum of proteases. Among the compounds tested, only calpain inhibitor I exerted strong inhibition. The involvement of cysteine protease(s) in the degradation of sIgM was corroborated by the inhibitory effect of diamide. We conclude that B lymphocytes avoid secretion by active and selective targeting of sIgM to a developmentally regulated postendoplasmic reticulum degradation pathway in which degradation is mediated by a cysteine protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号