首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extranuclear or nongenomic effects of thyroid hormones are mediated by receptors located at the plasma membrane or inside cells, and are independent of protein synthesis. Recently the αVβ3 integrin was identified as a cell membrane receptor for thyroid hormones, and a wide variety of nongenomic effects have now been shown to be induced through binding of thyroid hormones to this receptor. However, also other thyroid hormone receptors can produce nongenomic effects, including the cytoplasmic TRα and TRβ receptors and probably also a G protein-coupled membrane receptor, and increasing importance is now given to thyroid hormone metabolites like 3,5-diiodothyronine and reverse T3 that can mimick some nongenomic effects of T3 and T4. Signal transduction from the αVβ3 integrin may proceed through at least three independent pathways (protein kinase C, Src or mitogen-activated kinases) but the details are still unknown. Thyroid hormones induce nongenomic effects on at least three important Na+-dependent transport systems, the Na+/K+-ATPase, the Na+/H+ exchanger, and amino acid transport System A, leading to a mitogenic response in embryo cells; but modulation of the same transport systems may have different roles in other cells and at different developmental stages. It seems that thyroid hormones in many cases can modulate nongenomically the same targets affected by the nuclear receptors through long-term mechanisms. Recent results on nongenomic effects confirm the old theory that the primary role of thyroid hormones is to keep the steady-state level of functioning of the cell, but more and more mechanisms are discovered by which this goal can be achieved.  相似文献   

2.
Nongenomic effects of thyroid hormones on Na+-K+-ATPase activity were studied in chick embryo hepatocytes at two different developmental stages, 14 and 19 days of embryonal age, and the signal transduction pathways involved were characterized. Our data showed the following. 1) 3,5,3'-Triiodo-L-thyronine (T3) and 3,5-diiodo-L-thyronine (3,5-T2) rapidly induced a transient inhibitory effect on the Na+-K+-ATPase; the extent and duration depended on the developmental age of the cells. 2) 3,5-T2 behaved as a true hormone and fully mimicked the effect of T3. 3) Thyroxine had no effect at any of the developmental stages. 4) The inhibition of Na+-K+-ATPase was mediated by activation of protein kinase A, protein kinase C, and phosphoinositide 3-kinase, suggesting several modes of modulation of ATPase activity through phosphorylation at different sites. 5) The MAPK pathway did not seem to be involved in the early phase of hormone treatment. 6) The nonpermeant analog T3-agarose inhibited Na+-K+-ATPase activity in the same way as T3, confirming that hormone signaling initiated at a receptor on the plasma membrane. From these results, it can be concluded that the cell response mechanisms change rapidly and drastically within the early phase of embryo growth. The differences found at the two stages probably reflect the different roles of thyroid hormones during development and differentiation.  相似文献   

3.
The surface balance technique was employed to study the interactions of 3,5,3',5' tetraiodo L-thyronine, 3,5,3' triiodo L-thyronine, and 3,5-diiodothyronine with monomolecular phospholipid monolayers spread at the air-water interface. With this technique the insertion of thyroid hormones into egg yolk phosphatidylcholine was investigated. An increase of surface pressure and a substantial decrement in surface potential were observed after the injection of these hormones beneath a phospholipid monolayer. The negative dipole contribution upon hormone interaction opposes the well-known positive contribution of phospholipids. These effects correlated with iodo content of the thyroid molecule analogues 3,5,3',5' tetraiodo L-thyronine >3,5,3' triiodo L-thyronine >3,5-diiodothyronine. To our knowledge, these observations suggest a new and surprising effect of thyroid hormones on the regulation of transmembrane dipolar organization.  相似文献   

4.
Authors studied the effects of thyroid hormones and their diasteroisomers and 3,5-diiodothyronine (LT2) on the fluidity properties of inner mitochondrial membrane (IMM) by specifical fluorescent probe for the internal zone of biological membranes, the 1,6-diphenyl-1,3,5-hexatriene (DPH). The studied parameters are Arrhenius and Perrin plots. The DPH shows a decreased fluorescence quenching in the presence of both T3 and T4. The maximum effect is observed with 2 nM LT2. LT2 is more effective than LT3 in the central zone. The data confirm the selective action of LT3 and LT4 on IMM fluidity.  相似文献   

5.
We investigated the effect of thyroid hormone status on renal handing of Ca2+. Further, like kinetics of Ca2+ transport across brush-border membrane (BBM) and basolateral membrane (BLM) of renal epithelial cells was carried out. FE(Ca) was decreased in hyperthyroid (Hyper-T) rats and increased in hypothyroid (Hypo-T) rats as compared to euthyroid (Eu-T) rats. Ca2+ uptake into renal brush-border membrane vesicles (BBMV) was increased in Hyper-T rats and decreased in Hypo-T rats as compared to Eu-T rats. K(m) was lower in Hyper-T rats and higher in Hypo-T rats as compared to Eu-T rats whereas, V(max) remained unaltered. The transition temperature for calcium uptake varied inversely with the thyroid hormone status. Renal BBM of Hyper-T rats showed decreased anisotropy and polarisation of DPH as compared to EU-T rats whereas these values were increased in Hypo-T rats. Thus, the altered BBM fluidity appears to modulate Ca2+ transport across BBM. Na+/Ca2+ exchange activity of renal cells was increased in Hyper-T and decreased in Hypo-T rats as compared to Eu-T rats. V(max) for Na+/Ca2+ exchange was increased in Hyper-T rats and deceased in Hypo-T rats as compared to Eu-T rats, whereas, [Na+](0.5) was similar in all three groups. The c-AMP levels of renal cortex of Hyper-T rats was increased and that of Hypo-T rats decreased as compared to Eu-T rats. Thus, thyroid hormones increased Ca2+ reabsorption in the kidney of rat. Thyroid hormone-mediated modulation of BBM fluidity appears to stimulate Ca2+ uptake into renal BBMV. Thyroid hormones possibly activated the Na+/Ca2+ exchanger through cAMP-dependent pathway.  相似文献   

6.
Treatment of cultured rat hepatocytes with certain amino acids stimulates the activity of the System N transporter. The present report investigates the mechanism by which the stimulatory amino acids elicit their effect. Activation of System N-mediated transport by amino acids is rapid, cycloheximide-insensitive, and involves neither trans-stimulation nor recruitment of additional carriers to the plasma membrane. In addition, the activation is Na(+)-dependent, supporting the related observation that the most effective stimulatory amino acids are substrates of Na(+)-dependent transport Systems A, ASC, and N whereas substrates of Na(+)-independent System L and non-amino acid metabolites are ineffective. The data suggest that active accumulation of amino acids via Na(+)-dependent carriers is necessary for the activation to occur. The amino acid-dependent stimulation is blocked in a concentration-dependent manner by increasing extracellular K+. Treatment of hepatocytes with an amino acid such as asparagine causes cell swelling and stimulation of System N activity; both of these effects are reduced by hypertonic media. Furthermore, swelling of rat hepatocytes with hypotonic media mimics the System N-stimulatory effects of asparagine. Among the Na(+)-dependent amino acid transport systems present in rat hepatocytes, System N is stimulated preferentially by amino acid-containing or hypotonic media. Collectively, these results demonstrate that cell swelling is a prerequisite for the amino acid-dependent activation of the hepatic System N transporter.  相似文献   

7.
Thyroid hormone status influences calcium metabolism. To elucidate the mechanism of action of thyroid hormones on transcellular transport of calcium in rat intestine, Ca(2+) influx and efflux studies were carried out in brush border membrane vesicles (BBMV) and across the basolateral membrane (BLM) of enterocytes, respectively. Steady-state uptake of Ca(2+) into BBMV as well as Ca(2+) efflux from the BLM enterocytes was significantly increased in hyperthyroid (Hyper-T) rats and decreased in hypothyroid (Hypo-T) rats as compared to euthyroid (Eu-T) rats. Kinetic studies revealed that increase in steady state Ca(2+) uptake into BBMV from hyper-T rats was fraternized with decrease in Michaelis Menten Constant (K(m)), indicating a conformational change in Ca(2+) transporter. Further, this finding was supported by significant changes in transition temperature and membrane fluidity. Increased Ca(2+) efflux across enterocytes was attributed to sodium-dependent Ca(2+) exchange activity which was significantly higher in Hyper-T rats and lower in Hypo-T rats as compared to Eu-T rats. However, there was no change in Ca(2+)-ATPase activity of BLMs of all groups. Kinetic studies of Na(+)/Ca(2+) exchanger revealed that alteration in Na(+)-dependent Ca(2+) efflux was directly associated with maximal velocity (V(max)) of exchanger among all the groups. cAMP, a potent activator of Na(+)/Ca(2+) exchanger, was found to be significantly higher in intestinal mucosa of Hyper-T rats as compared to Eu-T rats. Therefore, the results of this study suggest that Ca(2+) influx across BBM is possibly modulated by thyroid hormones by mediating changes in membrane fluidity. Thyroid hormones activated the Na(+)/Ca(2+) exchange in enterocytes possibly via cAMP-mediated pathway.  相似文献   

8.
The molecular mechanism by which thyroid hormones exert their effects on cell growth is still unknown. In this study, we used chick embryo hepatocytes at different stages of development as a model to investigate the effect of the two thyroid hormones, T3 and T4, and of their metabolite T2, on the control of cell proliferation. We observed that T2 provokes increase of DNA-synthesis as well as T3 and T4, independently of developmental stage. We found that this stimulatory effect on the S phase is reverted by specific inhibitors of protein kinase C (PKC) and p42/44 mitogen-activated protein kinase (p42/44 MAPK), Ro 31-8220 or PD 98059. Furthermore, the treatment with thyroid hormones induces the activation of PKCalpha and p42/44 MAPK, suggesting their role as possible downstream mediators of cell response mediated by thyroid hormones. The increase of DNA-synthesis is well correlated with the increased levels of cyclin D1 and cdk4 that control the G1 phase, and also with the activities of cell-cycle proteins involved in the G1 to S phase progression, such as cyclin E/A-cdk2 complexes. Interestingly, the activity of cyclin-cdk2 complexes is strongly repressed in the presence of PKC and p42/44 MAPK inhibitors. In conclusion, we demonstrated that the thyroid hormones could modulate different signaling pathways that are able to control cell-cycle progression, mainly during G1/S transition.  相似文献   

9.
Leydig cells are the primary source of androgens in the mammalian testis. It is established that the luteinizing hormone (LH) produced by the anterior pituitary is required to maintain the structure and function of the Leydig cells in the postnatal testis. Until recent years, a role by the thyroid hormones on Leydig cells was not documented. It is evident now that thyroid hormones perform many functions in Leydig cells. For the process of postnatal Leydig cell differentiation, thyroid hormones are crucial. Thyroid hormones acutely stimulate Leydig cell steroidogenesis. Thyroid hormones cause proliferation of the cytoplasmic organelle peroxisome and stimulate the production of steroidogenic acute regulatory protein (StAR) and StAR mRNA in Leydig cells; both peroxisomes and StAR are linked with the transport of cholesterol, the obligatory intermediate in steroid hormone biosynthesis, into mitochondria. The presence of thyroid hormone receptors in Leydig cells and other cell types of the Leydig lineage is an issue that needs to be fully addressed in future studies. As thyroid hormones regulate many functions of Sertoli cells and the Sertoli cells regulate certain functions of Leydig cells, effects of thyroid hormones on Leydig cells mediated via the Sertoli cells are also reviewed in this paper. Additionally, out of all cell types in the testis, the thyrotropin releasing hormone (TRH), TRH mRNA and TRH receptor are present exclusively in Leydig cells. However, whether Leydig cells have a regulatory role on the hypothalamo-pituitary-thyroid axis is currently unknown.  相似文献   

10.
Thyroid hormone action at the cellular level   总被引:1,自引:0,他引:1  
Thyroid hormones influence numerous physiological and biochemical functions. The expression of the hormonal effects involves several events. The interaction of T3 with nuclear receptors, and the stimulation of mRNA production appears to be a major step. Extranuclear binding of thyroid hormones could account for early responses. Plasma membrane receptors may play a role in the cellular uptake of T3 and the stimulation of amino acids and sugar transport. A direct control of oxidative phosphorylation through binding of T3 to mitochondrial binding sites has been proposed. The role of cytosolic binding proteins remains unclear. The understanding of the mode of action of thyroid hormones requires a better knowledge of the molecular events occurring at the nuclear level, and the relation between the nuclear and extranuclear binding sites in the hormonal expression.  相似文献   

11.
Incorporation of inorganic sulfate into glycosaminoglycans of chick embryo sternum is stimulated by serum and triiodothyronine. Variations in the amino acid content of the medium, and in particular in the concentration of glutamine, changed the incorportion in control and stimulated sterna to the same degree. Omission of Na+ from the medium greatly reduced incorporation in both control and stimulated sterna; incorporation, and its stimulation by triiodothyronine, was restored by raising the concentration of Na+. Ouabain and valinomycin inhibited incorporation more than 90%, and triiodothyronine did not stimulate under these conditions. Puromycin and cycloheximide also inhibited incorporation almost completely, and abolished the stimulation by triiodothyronine and serum. Addition of p-nitrophenyl-beta-xyloside, in the presence of of puromycin ir cycloheximide, restored sulfation to a level of 5-10% of the control value; however, this level of incorporation was not increased by addition of serum or triiodothyronine. Actinomycin D, colchicine and vinblastine inhibited incorporation by 40% or less at the highest concentrations tested; however, these three agents completely abolished the ability of triiodothyronine to stimulate incorporation. Lumicolchicine and cytochalasin B decreased incorporation in controls slightly but did not affect the stimulation by serum or triiodothyronine. The results indicate that thyroid hormones stimulate glycosaminoglycan synthesis only under conditions which support efficient synthesis in control incubations, and suggest that microtubule formation may be essential to the mode of action of thyroid hormones in this system.  相似文献   

12.
Physiological role and regulation of the Na+/H+ exchanger   总被引:1,自引:0,他引:1  
In mammalian eukaryotic cells, the Na+/H+ exchanger is a family of membrane proteins that regulates ions fluxes across membranes. Plasma membrane isoforms of this protein extrude 1 intracellular proton in exchange for 1 extracellular sodium. The family of Na+/H+ exchangers (NHEs) consists of 9 known isoforms, NHE1-NHE9. The NHE1 isoform was the first discovered, is the best characterized, and exists on the plasma membrane of all mammalian cells. It contains an N-terminal 500 amino acid membrane domain that transports ions, plus a 315 amino acid C-terminal, the intracellular regulatory domain. The Na+/H+ exchanger is regulated by both post-translational modifications including protein kinase-mediated phosphorylation, plus by a number of regulatory-binding proteins including phosphatidylinositol-4,5-bisphosphate, calcineurin homologous protein, ezrin, radixin and moesin, calmodulin, carbonic anhydrase II, and tescalcin. The Na+/H+ exchanger is involved in a variety of complex physiological and pathological events that include regulation of intracellular pH, cell movement, heart disease, and cancer. This review summarizes recent advances in the understanding of the physiological role and regulation of this protein.  相似文献   

13.
At fertilization, the sea urchin egg undergoes an internal pH (pHi) increase mediated by a Na+ -H+ exchanger. We used antibodies against the mammalian antiporters NHE1 and NHE3 to characterize this exchanger. In unfertilized eggs, only anti-NHE3 cross-reacted specifically with a protein of 81-kDa, which localized to the plasma membrane and cortical granules. Cytochalasin D, C3 exotoxin (blocker of RhoGTPase function), and Y-27632 (inhibitor of Rho-kinase) prevented the pHi change in fertilized eggs. These inhibitors blocked the first cleavage division of the embryo, but not the cortical granule exocytosis. Thus, the sea urchin egg has an epithelial NHE3-like Na+ -H+ exchanger which can be responsible for the pHi change at fertilization. Determinants of this pHi change can be: (i) the increase of exchangers in the plasma membrane (via cortical granule exocytosis) and (ii) Rho, Rho-kinase, and optimal organization of the actin cytoskeleton as regulators, among others, of the intrinsic activity of the exchanger.  相似文献   

14.
A variety of xenobiotics, viz., 3,3',4,4'-tetrachlorobiphenyl (TCBP), sodium phenobarbital (PB), 3,5-diethoxycarbonyl-2, 4,6-trimethylpyridine (OX-DDC), and nifedipine, cause a decrease in uroporphyrinogen decarboxylase (UROG-D) activity, accompanied by uroporphyrin accumulation, in chick embryo hepatocytes in culture. In this study the activity of 17-day-old chick embryo hepatic UROG-D was determined by measuring the conversion of pentacarboxylporphyrinogen I to coproporphyrinogen I, and it was shown that a UROG-D inhibitor, previously reported to accumulate in TCBP-treated and PB-treated chick embryo hepatocytes in culture, also accumulates in OX-DDC-treated and nifedipine-treated chick embryo hepatocytes in culture. It was concluded that the accumulation of a UROG-D inhibitor provides an explanation for the UROG-D inhibition observed in this culture system with xenobiotics that cause uroporphyrin accumulation. Studies of the UROG-D inhibitory fraction isolated from the 10,000 x g, 40,000 x g, and 100,000 x g supernatant fractions of cultured chick embryo hepatocyte homogenate led to the conclusion that the UROG-D inhibitor is derived from a soluble component of the homogenate.  相似文献   

15.
Using digital imaging microscopy with the fluorescent indicator sodium-binding benzofuran isophtalate, we examined the cytosolic Na+ concentration ([Na+]i) in individual chick embryo heart cells. Inhibition of the Na(+)-H+ exchanger using Na(+)-free (Li+ substituted) medium and inhibition of the Na(+)-efflux through the Na(+)-Ca2+ exchanger using Ca(2+)-free medium didn't change the [Na+]i. The opening of voltage-dependent Na+ channels with veratridine (150 micrograms/ml) and inhibition of the Na(+)-K(+)-Cl(-)-cotransporter with bumetanide (10 microM) led to an increase in [Na+]i by 107% and 86%, respectively, suggesting that the Na+ channels and the Na(+)-K(+)-Cl- cotransporter predominantly regulate the [Na+]i in cultured chick embryo heart cells.  相似文献   

16.
Ethylisopropyl-amiloride is 100 times more potent than amiloride for inhibiting the Na+/H+ exchanger of 3T3 fibroblasts, chick skeletal muscle cells and chick cardiac cells. Half-maximum effects, measured at 3 mM external Na+ are observed at 20-100 nM and 5 microM for ethylisopropyl-amiloride and amiloride respectively. As previously observed for amiloride, the effect of ethylisopropyl-amiloride is antagonized by external Na+ ions.  相似文献   

17.
18.
Ouabain-sensitive 86Rb+ uptake by isolated rat hepatocytes was studied to elucidate how Ca2+-mobilizing hormones stimulate the Na+-pump. Stimulation of this uptake was observed with concentrations of vasopressin ([8-arginine]vasopressin, AVP), angiotensin II, and norepinephrine which elicited Ca2+ mobilization and phosphorylase activation. These results suggested that changes in cytosolic Ca2+, mediated by inositol trisphosphate, might trigger sodium pump stimulation by AVP. However, in hepatocytes incubated in Ca2+-free Krebs-Henseleit buffer, Na+-pump activity was not altered over 15 min by either 1.5 mM EGTA or 1.5 mM Ca2+. Furthermore, incubation of cells in 5 mM EGTA for 15-30 min drastically impaired the ability of AVP to increase cytosolic Ca2+, but only modestly attenuated AVP-stimulated Na+-pump activity. Two tumor promoters, phorbol myristate acetate (PMA) and mezerein, stimulated Na+/K+-ATPase-mediated transport activity. Similarly, addition of synthetic diacylglycerols or of exogenous phospholipase C from Clostridium perfringens to increase endogenous diacylglycerol levels also resulted in a stimulation of the Na+-pump in the absence of changes in cytosolic or total cellular Ca2+ levels. Stimulation of the Na+-pump by the combination of maximal concentrations of PMA and AVP did not produce an additive response, and both agents displayed a transient time course, suggesting that the two agents share a common mechanism. Stimulation of the Na+-pump by AVP and PMA was not blocked by amiloride analogs which inhibit Na+/H+ exchange, but these compounds blocked the action of insulin. These data suggest that the elevated Na+/K+-ATPase-mediated transport activity observed in hepatocytes following exposure to Ca2+-mobilizing hormones is a consequence of stimulated diacylglycerol formation and may involve protein kinase C.  相似文献   

19.
Zinc influx, driven by a steep inward electrochemical gradient, plays a fundamental role in zinc signaling and in pathophysiologies linked to intracellular accumulation of toxic zinc. Yet, the cellular transport mechanisms that actively generate or maintain the transmembrane gradients are not well understood. We monitored Na+-dependent Zn2+ transport in HEK293 cells and cortical neurons, using fluorescent imaging. Treatment of the HEK293 cells with CaPO4 precipitates induced Na+-dependent Zn2+ extrusion, against a 500-fold transmembrane zinc gradient, or zinc influx upon reversal of Na+ gradient, thus indicating that Na+/Zn2+ exchange is catalyzing active Zn2+ transport. Depletion of intracellular ATP did not inhibit the Na+-dependent Zn2+ extrusion, consistent with a mechanism involving a secondary active transporter. Inhibitors of the Na+/Ca2+ exchanger failed to inhibit Na+-dependent Zn2+ efflux. In addition, zinc transport was unchanged in HEK293 cells heterologously expressing functional cardiac or neuronal Na+/Ca2+ exchangers, thus indicating that the Na+/Zn2+ exchange activity is not mediated by the Na+/Ca2+ exchanger. Sodium-dependent zinc exchange, facilitating the removal of intracellular zinc, was also monitored in neurons. To our knowledge, the Na+/Zn2+ exchanger described here is the first example of a mammalian transport mechanism capable of Na+-dependent active extrusion of zinc. Such mechanism is likely to play an important role, not only in generating the transmembrane zinc gradients, but also in protecting cells from the potentially toxic effects of permeation of this ion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号