首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
目的:He-Ne激光照射治疗的机理不明,激光照射引起细胞内Ca^2+水平变化,为治疗机理提供理论依据。方法:He-Ne激光照射引起鼠成纤维细胞L929内[Ca^2+]i的变化,用HO342对细胞DNA活性染色,Fluo-3AM对细胞内Ca^2+染色,利用FCM同时定量分析细胞DNA和细胞内Ca^2+的变化。结果:激光照射15min(光剂量11.81J/cm^2后,FCM分析可见DNA分布直方图右移  相似文献   

2.
He-Ne和CO2激光对茶树花药培养的药裂率和出愈率的影响,既有促进作用,也有抑制作用。按出愈率和愈伤组织生长状况的序列:He-Ne:20J/cm^2〉CK〉He-Ne:30J/cm^2〉CO2:35.4J/cm^2。对He-Ne激光照射花药及其愈伤组织的过氧化物酶同工酶分析,主要表现在弱酶带的变化上,无规律差异。  相似文献   

3.
李金泉  高爱琴 《激光生物学报》1995,4(4):733-737,759
为了探索激光辐射精子的诱变效应,本试验采用TST(Triple Stain Technique,即精子三重染色法)、SPA(Sperm Penetraition Assay,即精子穿透分析法和CAS(Chromosomal Aneuploidy in Spermatozoa,即精子单倍染色体制备技术),三项有关精子的现代分析技术,对激光辐射精子的受精学、遗传学效应进行了研究。结果表明:He-Ne激  相似文献   

4.
本文通过低强度He-Ne激光以能量密度分别为14.31J/cm^2(辐照5’)、28.62J/cm^2(辐照10)、57.24J/cm^2(辐照20)114.52J/cm^2(辐照40)燠夫体外周血后,检测其淋染色畸变率(CA),激光照射血样(能量密度由低到高)未照射血样CA分别平均为4.29‰、3.96‰、3.81‰、3.590‰、4.19‰、X^检测无显著差异,说明低强度的He-Ne激光辐照人  相似文献   

5.
阮芝绪  蔡福 《激光生物学报》1997,6(3):1129-1131
本文以离体培养的Raji细胞为材料,采用ELLMAN方法检测了不同剂量的He-Ne激光对Raji细胞膜表面SH含量的影响。发现0.5J/cm^2He-Ne激光能量可明显增加膜表面SH含量(P〈0.05)。大于或小于此剂量的He-Ne激光对膜表面SH含量的影响均不明显(P〉0.05)。提示0.5J/cm^2的激光能量对膜有刺激作用。  相似文献   

6.
采用近红外付立叶拉曼光谱研究了三螺旋RNA(rU).poly(rA).poly(rU)在溶液中的构象和在银胶中的表面增强拉曼散行为。结果表明在溶液中,该三螺旋RNA分子中以Watson-Crick碱基酸对的两条链处于A-构型,而第二条嘧啶链处于C2’-endo/anti构象。在银胶中,该三螺旋RNA的表面增强拦曼效应明显。与溶液状态下相比,835和819cm^-1谱带的出现暗示该三螺旋RNA吸附到  相似文献   

7.
激光辐照对离体质粒DNA的断裂效应   总被引:2,自引:2,他引:0  
利用低功率的He- Ne 激光辐照离体质粒DNA,并用离子束和紫外线为对照,分析了质粒DNA的单双链断裂效应。结果表明:He- Ne 激光辐照可诱发质粒DNA 断裂,且断裂频率随辐照剂量增大而提高;He- Ne 激光辐照后的质粒超螺旋双链DNA存活率剂量曲线不同于紫外线和氮离子束。He- Ne 激光诱发双链断裂的频率低于氮离子束和紫外线。  相似文献   

8.
He-Ne激光与云芝多糖单独使用或配合使用均可显著提高小鼠植物血球凝集素(PHA)刺激的淋巴细胞转化率、血素抗绵羊红细胞(SRBC)血凝抗体效价、脾细胞产生溶血抗体能力、自然杀伤(NK)细胞及巨噬细胞(MP,Mega,Phgocyte)抗瘤活性,且配合使用好于单独使用,说明He-Ne激光与云芝多糖具有协同作用。  相似文献   

9.
本文通过低强度 He Ne 激光以能量密度分别为 1431 J/cm 2 (辐照 5′)、2862 J/cm 2 (辐照 10′)、5724 J/cm 2 (辐照 20′)11452 J/cm 2 (辐照 40′)照射人体外周血后,检测其淋巴细胞染色体畸变率( C A),激光照射血样(能量密度由低到高)及未照射血样 C A 分别平均为 429‰、396‰、381‰、359‰、419‰, X2 检验无显著差异( P> 005),说明低强度的 He Ne 激光辐照人体细胞对细胞染色体无致畸变效应。而且随着能量密度的增大,染色体的畸变率有降低的趋势,因此认为是低强度的 He Ne 激光促使细胞内分子的相互作用和能量转换,从而使染色体损伤的修复增强,其机理有待于进一步的研究。  相似文献   

10.
分别于514.5nm及604um波长激发下,对游离的细胞色素C,细胞色素氧化酶以及细胞色素C和细胞色素氧化酶的复合体的共振拉曼光谱进行了分析比较,在形成复合体时,双方蛋白的共振拉曼谱均有所变化,一个共同的特征性变化是A2gv221130cm-1,v211312cm-1,v201400cm-2,和v191584cm-1强度都有增强,其中变化最明显的是A2gv191584cm-1峰,在游离态中,I1540/i1582>1,在结合态中I1550/I1582<1。  相似文献   

11.
R M Wartell  J T Harrell 《Biochemistry》1986,25(9):2664-2671
Raman spectra were obtained from four bacterial DNAs varying in GC content and four periodic DNA polymers in 0.1 M NaCl at 25 degrees C. A curve fitting procedure was employed to quantify and compare Raman band characteristics (peak location, height, and width) from 400 to 1600 cm-1. This procedure enabled us to determine the minimum number of Raman bands in regions with overlapping peaks. Quantitative comparison of the Raman bands of the eight DNAs provided several new results. All of the DNAs examined required bands near 809 (+/- 7) and 835 (+/- 5) cm-1 to accurately reproduce the experimental spectra. Since bands at these frequencies are associated with A-family and B-family conformations, respectively, this result indicates that all DNAs in solution have a mixture of conformations on the time scale of the Raman scattering process. Band characteristics in the 800-850-cm-1 region exhibited some dependence on CG content and base pair sequence. As previously noted by Thomas and Peticolas [Thomas, G. A., & Peticolas, W. L. (1983) J. Am. Chem. Soc. 105, 993], the poly[d(A)].poly[d(T)] spectra were qualitatively distinct in this region. The A-family band is clearly observed at 816 cm-1. The intensity of this band and that of the B-family band at 841 cm-1 were similar, however, to intensities in the natural DNA spectra. Three bands at 811, 823, and 841 cm-1 were required to reproduce the 800-850-cm-1 region of the poly[d(A-T)].poly[d(A-T)] spectra. This may indicate the presence of three backbone conformations in this DNA polymer. Analysis of intensity vs. GC content for 42 Raman bands confirmed previous assignments of base and backbone vibrations and provided additional information on a number of bands.  相似文献   

12.
H DeGrazia  D Brown  S Cheung  R M Wartell 《Biochemistry》1988,27(17):6359-6365
Raman spectra from three subfragments of the Escherichia coli lactose promoter region were obtained in 0.1 M NaCl. The three DNAs are 21, 40, and 62 bp in length. The 21 and 62 bp DNAs contain the binding site for the catabolite gene activator protein (CAP). The 40 bp DNA contains the binding site for the lac repressor. A quantitative analysis of Raman band characteristics indicates an overall B-type conformation for these gene regulatory sites. Bands which correspond to A-family (807 cm-1) and B-family (834 cm-1) deoxyribose phosphate vibrations have the same intensities as bands found in heterogeneous DNAs. The spectra of the 21 bp CAP site have, however, a small band at 867 cm-1 and several other small differences similar to some characteristics observed in C-DNA spectra. Several dG nucleosides in the CAP site appear to be altered from the conventional C2'-endo/anti conformation. At 45 degrees C, well below the melting region of these DNAs, small changes occur in the spectra of the 40 bp lac repressor site which are not observed in the other DNAs. A weak band occurs at 705 cm-1, and intensity changes are observed at 497, 682, and 792 cm-1. The changes suggest that the conformations of several dG nucleosides are altered and that a small region may exist with characteristics of an A-family backbone. This conformational change at 45 degrees C coincides with previous NMR observations indicating an enhanced imino proton exchange rate at a GTG sequence within the lac operator site.  相似文献   

13.
Raman spectroscopy was employed to investigate the temperature-induced B to Z transition of poly(dG-dm5C). The transition midpoint was about 37 degrees C for a solvent containing 20 mM Mg2+. A 10-fold change in Mg2+ concentration altered the transition midpoint by at least 60 degrees C. Raman spectra of the B and Z forms of poly(dG-dm5C) exhibited characteristics similar to those observed with poly(dG-dC). The 682 cm-1 guanine mode and 835 cm-1 backbone mode were present in the B conformation. In the Z form the intensities of these two bands decrease substantially and new peaks were observed at 621 cm-1, 805 and 819 cm-1. Several bands unique to poly(dG-dm5C) were also observed. Transition profiles of band intensity vs. temperature were determined for fourteen Raman bands. The curves of all of the base vibrations and one backbone mode had the same slope and midpoint. This indicates that conformational changes in the guanine and methycytosine bases occur concurrently.  相似文献   

14.
Raman spectra of the DNA binding site for cro repressor protein were obtained in the presence and absence of bound cro protein. The 17 base pair fragment is a consensus sequence of the six cro binding sites in phage lambda, except that the second base to the right of the center of pseudosymmetry is altered. Analysis of the spectrum of the free DNA indicates that the molecule exists in a B-like conformation with deviations from the usual B form occurring mainly in the bands assigned to A-T vibrations. The spectrum of the bound DNA was obtained by subtracting the spectrum of free cro from the spectrum of the complex which was estimated to be 90% bound. The DNA undergoes significant structural changes upon binding to the protein; most notable of these changes is a destacking of the G-C bases reflected by increases in the 1240, 1262, and 1320 cm-1 bands. A decrease in the 1361 cm-1 band that occurs has also been assigned to a destacking in guanine bases. The appearance of a 705 cm-1 band and the decrease and downshift of the 670 cm-1 band are consistent with the appearance of A-like character in the A-T region of the binding site when the protein binds; however, the spectra indicate that the entire binding site remains in a distorted B-like conformation. We use the 705 cm-1 band to estimate A-like character because the 800-850 cm-1 region is obscured by interference from strong protein bands. Other shifts in both intensity and position cannot be assigned to characteristic changes in conformation and therefore must be attributed to the protein influencing the structure in a novel way.  相似文献   

15.
Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) induce the greatest structural changes in B-DNA. The Raman (vibrational) band differences are extensive and indicate partial disordering of the B-form backbone, reduction in base stacking, reduction in base pairing, and specific metal interaction with acceptor sites on the purine (N7) and pyrimidine (N3) rings. Many of the observed spectral changes parallel those accompanying thermal denaturation of B-DNA and suggest that the metals link the bases of denatured DNA. While exocyclic carbonyls of dT, dG, and dC may stabilize metal ligation, correlation plots show that perturbations of the carbonyls are mainly a consequence of metal-induced denaturation of the double helix. Transition metal interactions with the DNA phosphates are weak in comparison to interactions with the bases, except in the case of Cu2+, which strongly perturbs both base and phosphate group vibrations. On the other hand, the Raman signature of B-DNA is largely unperturbed by Mg2+, Ca2+, Sr2+, and Ba2+, suggesting much weaker interactions of the alkaline earth metals with both base and phosphate sites. A notable exception is a moderate perturbation by alkaline earths of purine N7 sites in 160-base pair DNA, with Ca2+ causing the greatest effect. Correlation plots demonstrate a strong interrelationship between perturbations of Raman bands assigned to ring vibrations of the bases and those of bands assigned to exocyclic carbonyls and backbone phosphodiester groups. However, strong correlations do not occur between the Raman phosphodioxy band (centered near 1092 cm-1) and other Raman bands, suggesting that the former is not highly sensitive to the structural changes induced by divalent metal cations. The structural perturbations induced by divalent cations are much greater for > 23-kilobase pair DNA than for 160-base pair DNA, as evidenced by both the Raman difference spectra and the tendency toward the formation of insoluble aggregates. In the presence of transition metals, aggregation of high-molecular-weight DNA is evident at temperatures as low as 11 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The resonance Raman (RR) spectra of oxidized, reduced, and oxidized cyanide-bound cytochrome c oxidase with excitation at several wavelengths in the 600-nm region are presented. No evidence is found for laser-induced photoreduction of the oxidized protein with irradiation at lambda approximately 600 nm at 195 K, in contrast to the predominance of this process upon irradiation in the Soret region at this temperature. The Raman spectra of all three protein species are very similar, and there are no Raman bands which are readily assignable to either cytochrome a or cytochrome a3 exclusively. The Raman spectra of the three protein species do, however, exhibit a number of bands not observed in the RR spectra of other hemoproteins upon exicitation in their visible absorption bands. In particular, strong Raman bands are observed in the low-frequency region of the RR spectra (less than 500 cm-1). The frequencies of these bands are similar to those of the copper-ligand vibrations observed in the RR spectra of type 1 copper proteins upon excitation in the 600-nm absorption band characteristic of these proteins. In cytochrome c oxidase, these bands do not disappear upon reduction of the protein and, therefore, cannot be attributed to copper-ligand vibrations. Thus, all the observed RR bands are associated with the two heme A moieties in the enzyme.  相似文献   

17.
Fourier Transform Infrared (FT-IR) spectra of solid samples of DNA and RNA obtained from freeze-drying at solid CO2 and liquid nitrogen temperatures, have been recorded and correlation between the conformational transitions and spectral changes is proposed. It is concluded that an equilibrium exists between A, B and Z conformations at low temperatures for the DNA molecule, which is temperature dependent, whereas the RNA molecule exhibits only the A conformation. The results have been compared with the metal-adducts of DNA and RNA, where one of the conformations is predominant. Marker infrared bands for the B conformer have been found to be the strong band at 825 cm-1 (sugar conformer mode) and a band with medium intensity at 690 cm-1 (guanine breathing mode). The A conformation showed characteristic bands at 810 and 675 cm-1. The B to Z conformational transition was characterized by the strong absorption bands near 820-810 cm-1 and at 665-600 cm-1.  相似文献   

18.
Raman spectra, in the frequency region of the protein vibrations, of intact single muscle fibers of the giant barnacle are presented. Strong bands at 1521 and 1156 cm-1 in the spectra are attributed to resonance-enhanced Raman bands of membrane-bound beta-carotene. Many bands of the myofibrillar proteins are also observed, and at least three spectral features confirm that these proteins adopt a predominantly alpha-helical structure: (1) the amide I band at 1648 cm-1, (2) the weak scattering in the amide III region, and (3) a strong skeletal C-C stretching band at 939 cm-1. Deuterated fibers have also been examined in order to find the exact shape of the amide III band. The presence in the fibers of paramyosin, which is only found in catch muscles, is also apparent from the spectra.  相似文献   

19.
Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U).poly(A).poly(U) triple helix. We compared the Raman spectra of poly(U).poly(A).poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A).poly(U). The presence of a Raman band at 863 cm-1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3' endo; that of the second poly(U) chain may be C2' endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A).poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands.  相似文献   

20.
The B to Z conformational transition of (dG-dC)n.(dG-dC)n and a 157 bp DNA restriction fragment were followed using Raman spectroscopy. The 157 bp DNA has a 95 bp segment from the E. coli lactose operon sandwiched between 26 and 32 bp of (dC-dG) sequences. Raman spectra of the DNAs were obtained at varying sodium chloride concentrations through the region of the transition. A data analysis procedure was developed to subtract the background curves and quantify Raman vibrational bands. Profiles of relative intensity vs. sodium chloride concentration are shown for bands at 626, 682, 831-833 and 1093 cm-1. Both (dG-dC)n.(dG-dC)n and the 157 bp DNA show changes in the guanine vibration at 682 cm-1 and backbone band at 831-3 cm-1 preceding a highly cooperative change in the 1093 cm-1 PO2- vibration. This result indicates that there are at least two conformational steps in the B to Z conformational pathway. We review the effect of the (dC-dG) portion of the 157 bp DNA on the 95 bp segment. Comparison of Raman spectra of the 157 bp DNA, the 95 bp fragment and (dG-dC)n.(dG-dC)n indicate that in 4.5 M NaCl the (dC-dG) segments are in a Z-conformation. Base stacking in the 95 bp portion of the 157 bp DNA appears to maintain a B-type conformation. However, a substantial portion of this region no longer has a B-type backbone vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号