首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
应用脱氧核糖降解法研究了CuZn-SOD对几种·OH产生系统的作用机理.结果证明:SOD对Fe(3+)·O·H2O2系统中·OH的产生有明显的抑制作用,而失活SOD或BSA对它的抑制作用不大;在Fe(2+)·H2O2和CU(2+)·H2O2系统中,SOD、失活SOD和BAS均能抑制·OH的产生;在Fe(2+)·O系统中,SOD对·OH产生作用不大,而失活SOD或BSA对它有明显的抑制作用.由此推测SOD对·OH形成可能有三方面的影响:1.对O的清除作用,阻断Haber-Weiss反应;2.对金属离子的络合作用,降低·OH的产额;3.促进H2O2的积累,加快Fenton反应.  相似文献   

2.
本文用ESR方法研究了血卟啉衍生物(HPD)和PhotofrinⅡ的活性成分双卟啉醚酯混合物(DHE)生成^1O2的光敏作用。利用2,2,6,6-Tetramethyl-4-piperidone(Tempone)对^1O2的捕捉,测定所生成的氮氧自由基的ESR信号,并经加NaN3和D2O的实验,证实了DHE光敏反应有^1O2的生成,并在实验的浓度范围内,随DHE浓度增大,生成的^1O2也增加。结合  相似文献   

3.
通过化学反应体系产生OH^-和O^-2自由基,采用荧光和化学发光检测体系,比较研究了不同亚型及不同结合金属的金属硫蛋白(MT)清除自由基能力的大小。结果表明,对于同一亚型,Zn结合MT清除自由基的能力大于Cd结合MT;同一结合金属的MT,MT1清除自由基的能力大于MT2。通过比较ZnMT1与谷胱甘肽(GSH)及超氧化物歧化酶(SOD)清除自由基的能力大小发现,ZnMT1清除OH的能力是GSH的10  相似文献   

4.
诱导型一氧化氮合酶(iNOS)基因表达的调控   总被引:11,自引:0,他引:11  
一氧化氮(NO)自由基有多方面的生物学功能。随着研究的深入,发现NO能与超氧阴离子(O-2·)反应生成激发态亚硝酸(ONOOH*),它与靶分子能产生羟自由基(·OH)和二氧化氮(NO2)样反应,在体内原先认为的一些NO效应,现在知道主要是由于ONOO...  相似文献   

5.
稻瘟菌侵染后水稻幼苗活性氧的产物与抗病性的关系   总被引:4,自引:0,他引:4  
以对稻瘟菌ZB1小种表现抗病(H8R)和感病反应(H8S)的两种水稻为材料接种稻瘟菌后,表现不亲和反应的水稻幼苗叶片中O^-2产生速率提高,于24h和60出现两个高峰;H2O2量在3h和48h分别出现高峰;OH量在36h后略高于对照;过氧化物酶(POD)活性从6h起显著升高。而在表现亲和反应的水稻中O2^-、H2O2和.OH的产生及POD活性的增加均迟于现不亲和反应的,且强度也小。SOD和过氧化氢  相似文献   

6.
通过分红菌乙素修饰物(-乙醇胺,简称HB-E)对小鼠腹水肝癌细胞(AH)光敏损伤以及HB-E被AH细胞摄取过程的研究。结果表明,HB-E在640nm光照的条件下对AH细胞产生很强的光动力作用;细胞对HB-E的摄取速度快(室温下2min,达到平衡),在饱和时每个细胞可摄取HB-E分子5×109个;经多种竹红菌素修饰物光敏能力的比较中HB-E光敏作用明显要大于其它的光敏剂;光敏机理的研究中确定了活性氧的作用是存在的。  相似文献   

7.
反相胶束体系中辣根过氧化物酶的活力和动力学性质   总被引:4,自引:2,他引:4  
本文系统研究辣根过氧化物酶在CTAB/H2O/CHC.3-isooctane(1∶1,V/V)反相胶束体系中的催化行为。在一定条件下酶反符合Michaelis-Menten动力学。研究水含量、底物浓度、PH、温度、表面活性剂的浓度等对酶反应的影响,结果表明表面活性剂对酶表现非竞争性抑制作用,高浓度的过氧化氢抑制酶活,最适PH为7.0。在低水含量(W0<5)的胶束体系中保温后,酶的活力发生不可逆的改  相似文献   

8.
NNK诱发BEP2D细胞产生活性氧及其对DNA的损伤   总被引:4,自引:0,他引:4  
通过测定细胞内和细胞上清中活性氧(reactive oxygen species,ROS)水平,以及DNA 加合物——8-羟基脱氧鸟嘌呤核苷(8-hydroxydeoxyguanosine,OH8dG)含量,对烟草特异亚硝胺类化合物4-甲基亚硝胺-1(3-吡啶基)-1-丁酮(4-(m ethylnitrosam ino)-1-(3-pyridyl)-1-butanone,NNK)诱发人乳头状病毒永生化的人支气管上皮细胞(hum an papillom avirus-im m ortalized hum anbronchialepithelialcellline,BEP2D)产生的ROS及其对DNA 的氧化损伤进行研究,并观察纳米硒的保护作用.结果表明,BEP2D 细胞经不同浓度的NNK 作用后,细胞内和细胞上清中ROS以及OH8dG含量均显著增加,并有较好的剂量效应关系.1 μm ol·L- 1纳米硒(nanoselenuim ,NS)能明显抑制NNK 诱发BEP2D细胞产生的ROS及OH8dG 水平.揭示NNK 能造成细胞的氧化损伤,而NS对NNK 所致细胞的氧化损伤有保护作用.  相似文献   

9.
通过竹红菌乙素修饰物(-乙醇胺,简称HB-E)对小鼠腹水肝癌细胞光敏损伤以及HBE被AH细胞摄取过程的研究,结果表明,HB-E在640nm光照的条件下对AH细胞产生很强的光动力作用,细胞对HB-E的摄取速度快(室温下2min,达到平衡)在饱和时每个细胞可摄取HB-E分子5×10^9个;经多种竹红菌素修饰物光敏能力的比较中HB-E光敏作用明显要大于其它的光敏剂,光敏机理的研究中确定了活性氧的作用是存  相似文献   

10.
通过化学反应体系产生OH-和O自由基,采用荧光和化学发光检测体系,比较研究了不同亚型及不同结合金属的金属硫蛋白(MT)清除自由基能力的大小。结果表明,对于同一亚型,Zn结合MT清除自由基的能力大于Cd结合MT同一结合金属的MT,MT1清除自由基的能力大于MT2。通过比较ZnMT1与谷胱甘肽(GSH)及超氧化物歧化酶(SOD)清除自由基的能力大小发现,ZnMT1清除OH的能力是GSH的100倍,清除O自由基的能力分别是GSH和SOD的25和0.01倍。即MT是一种很好的OH自由基清除剂。以OH对核酸(DNA)的损伤为例,研究了MT对核酸损伤的保护作用,其变化规律与上述结果相一致。  相似文献   

11.
To improve photodynamic activity of the parent hypocrellin B (HB), a tetra-brominated HB derivative (compound 1) was synthesized in high yield. Compared with HB, compound 1 has enhanced red absorption and high molar extinction coefficients. The photodynamic action of compound 1, especially the generation mechanism and efficiencies of active species (Sen·-, O·-2 and 1O2) were studied using electron paramagnetic resonance (EPR) and spectrophotometric methods. In the deoxygenated DMSO solution of compound 1, the semiquinone anion radical of compound 1 is photogenerated via the self-electron transfer between the excited and ground state species. The presence of electron donor significantly promotes the reduction of compound 1. When oxygen is present, superoxide anion radical (O·-2) is formed via the electron transfer from Sens·- to the ground state molecular oxygen. The efficiencies of Sens·- and O·-2 generation by compound 1 are about three and two times as much as that of HB, respectively. Singlet oxygen (1O2) can be produced via the energy transfer from triplet compound 1 to ground state oxygen molecules. The quantum yield of singlet oxygen (1O2) is 0.54 in CHCl3 similar to that of HB. Furthermore, it was found that the accumulation of Sens·- would replace that of O·-2 or 1O2 with the depletion of oxygen in the sealed system.  相似文献   

12.
Mono-substituted hypocrellin B (MHB) and di-substituted hypocrellin B (DHB) by mercaptoacetic acid are new photosensitizers synthesized to improve the red absorption and water solubility of the parent hypocrellin B (HB). The photochemistries (Type I and/or Type II) of MHB and DHB have been studied in homogeneous solutions using electron paramagnetic resonance (EPR) and spectrophotometric methods. In anaerobic homogeneous DMSO solution, DHB*- (or MHB*-) was predominantly photoproduced via self-electron transfer between the excited- and ground-state species. The presence of an electron donor significantly promotes the formation of the reduced form of DHB (or MHB). As compared with hypocrellin B, the efficiencies of DHB*- and MHB*- generation was enhanced obviously. When oxygen-saturated solutions of DHB (or MHB) were illuminated with 532 nm light, singlet oxygen (1O2), superoxide anion radical (O2*-), hydroxyl radical (*OH) and hydrogen peroxide (H2O2) were formed. DHB and MHB generate 1O2 with quantum yields of 0.18 and 0.22, respectively, which are much lower than that of HB (0.76) in chloroform. The superoxide anion radical was significantly enhanced by the presence of electron donors. The rate of O2*- production was also dependent on the concentration of DHB or MHB. Moreover, O2*- upon disproportionation can generate H2O2 and ultimately the highly reactive *OH via the Fenton reaction and other pathway with the involvement of DHB*- (or MHB*-). As in the case of DHB*- (or MHB*-), the efficiencies of O2*- and *OH generation by DHB and MHB were also enhanced obviously, consistent with the fact that DHB*- (or MHB*-) acts as the precursor of O2* and thus *OH. These findings suggest that the photodynamic actions of DHB and MHB may proceed via enhanced Type I mechanism and reduced Type II mechanism as compared with that of HB.  相似文献   

13.
To improve water solubility and specific affinity for malignant tumors, glycoconjugated hypocrellin B (GHB) has been synthesized. Illumination of deoxygenated DMSO solution containing GHB generates a strong electron paramagnetic resonance (EPR) signal. The EPR signal is assigned to the semiquinone anion radical of GHB (GHB*-) based on a series of experimental results. Spectrophotometric measurements show that the absorption bands at 645 nm and 502 nm (pH 8.0) or 505 nm (pH 11.0) arise from the semiquinone anion radical (GHB*-) and hydroquinone (GHBH2) of GHB, respectively. GHBH2 is readily formed via the decay of GHB*- in water-contained solution. The increase of pH value of the reaction media promotes this process. When oxygen is present, superoxide anion radical (O2*-) is formed, via the electron transfer from GHB*-, the precursor, to ground state molecular oxygen. Hydroxyl radical can be readily detected by DMPO spin trapping when aerobic aqueous solution containing GHB is irradiated. As compared with the parent compound, hypocrellin B (HB), the efficiency of O2* and *OH generation by GHB photosensitization is enhanced significantly. Singlet oxygen (1O2) can be produced via the energy transfer from triplet GHB to ground state oxygen molecules, with a decreased quantum yield, i.e., 0.19. These findings suggest that the new GHB possesses an enhanced type I process and a decreased type II process as compared with hypocrellin B.  相似文献   

14.
This short review covers the biotechnological aspects of the production of poly-D-3-hydroxybutyric acid, P(3HB), from H2, O2 and CO2 by autotrophic culture of the hydrogen-oxidizing bacterium, Ralstonia eutropha. Considering the efficiency of utilization of a gas mixture as substrate, a practical fermentation process using R. eutropha for the mass production of P(3HB) from CO2 should be designed on the basis of a recycled-gas, closed-circuit culture system. Also, maintaining the O2 concentration in a gas phase lower than 6.9% (v/v) is essential to prevent the gas mixture from exploding. Our study, using an explosion-proof fermentation bench plant and a two-stage culture system with a newly designed air-lift fermenter, demonstrated that very high P(3HB) yield and productivity could be obtained while the O2 concentration was maintained below 6.9%. However, a study on the continuous production of P(3HB) from CO2 by chemostat culture of R. eutropha revealed that the productivity and content of P(3HB) in the cells was considerably lower than by fed-batch culture. It is deduced that the use of the hydrogen-oxidizing bacterium, Alcaligenes latus, which accumulates P(3HB) even in the exponential growth phase, will be useful for the effective production of P(3HB) from CO2.  相似文献   

15.
To improve photodynamic activity of the parent hypocrellin B (HB), a tetra-brominated HB derivative (compound 1) was synthesized in high yield. Compared with HB, compound 1 has enhanced red absorption and high molar extinction coefficients. The photodynamic action of compound 1, especially the generation mechanism and efficiencies of active species (Sen·-, O·-2 and 1O2) were studied using electron paramagnetic resonance (EPR) and spectrophotometric methods. In the deoxygenated DMSO solution of compound 1, the semiquinone anion radical of compound 1 is photogenerated via the self-electron transfer between the excited and ground state species. The presence of electron donor significantly promotes the reduction of compound 1. When oxygen is present, superoxide anion radical (O·-2) is formed via the electron transfer from Sens·- to the ground state molecular oxygen. The efficiencies of Sens·- and O·-2 generation by compound 1 are about three and two times as much as that of HB, respectively. Singlet oxygen (1O2) can be produced via the energy transfer from triplet compound 1 to ground state oxygen molecules. The quantum yield of singlet oxygen (1O2) is 0.54 in CHCl3 similar to that of HB. Furthermore, it was found that the accumulation of Sens·- would replace that of O·-2 or 1O2 with the depletion of oxygen in the sealed system.  相似文献   

16.
We have identified a range of compounds which, when present during poly(3-hydroxybutyrate) [P(3HB)] accumulation by Ralstonia eutropha (reclassified from Alcaligenes eutrophus), can act as chain transfer agents in the chain termination step of polymerization. End-group analysis by 31P NMR of polymer derivatized with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane revealed that all these compounds were covalently linked to P(3HB) at the carboxyl terminus. All chain transfer agents possessed one or more hydroxyl groups, and glycerol was selected for further investigation. The number-average molecular mass (Mn) of P(3HB) produced by R. eutropha from glycerol was substantially lower than for polymer produced from glucose, and we identified two new end-group structures. These were attributed to a glycerol molecule bound to the P(3HB) chain via the primary or secondary hydroxyl groups. When a primary hydroxyl group of glycerol is involved in chain transfer, the end-group structure is in both [R] and [S] configurations, implying that chain transfer to glycerol is a random transesterification and that PHA synthase does not catalyse chain transfer. 3-Hydroxybutyric acid is the most probable chain transfer agent in vivo, with propagation and termination reactions involving transfer of the P(3HB) chain to enzyme-bound and free 3-hydroxybutyrate, respectively. Only carboxyl end-groups were detected in P(3HB) extracted from exponentially growing bacteria. It is proposed that a compound other than 3-hydroxybutyryl-CoA acts as a primer in the initiation of polymer synthesis.  相似文献   

17.
A-two stage culture method of hydrogen-oxidizing bacterium, Alcaligenes eutrophus, is used to produce poly-D-3-hydroxybutyrate, P(3HB) from CO2, O2, and H2 without using a very high oxygen transfer rate while maintaining the O2 concentration in gas phase below 6.9 (v/v)% to prevent detonation of the gas mixture. The two-stage method consists of a heterotrophic culture using fructose as carbon source for exponential cell growth and an autotrophic culture for P(3HB) accumulation. We investigated the use of acetic acid as a cheaper carbon source than fructose for the heterotrophic culture in the two-stage method. However, the acetate concentration in the culture system must be maintained at 1.0 g. dm-3 since its inhibitory effect on the cell growth is very strong. Then, high cell density cultivation of A. eutrophus was investigated by pH-stat continuous feeding of acetic acid to control acetate concentration. As a result, acetate concentration was automatically maintained around 1.0 g. dm-3 by using a feed with a composition in CH3COOH/CH3COONH4/KH2PO4 molar ratio of 5:1:0.084. Cell concentration increased to 48.6 g. dm-3 after 21 h of cultivation. The cell mass grown in the fed-batch culture on acetic acid was useful for P(3HB) production from CO2 in the subsequent autotrophic culture stage. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

18.
The cation radical of dye produced from the interfacial electron transfer from a surface chelated dye to the conduction band of the colloidal TiO2 was studied by laser flash photolysis and electron paramagnetic resonance (EPR) techniques. The study employed hypocrellin B (HB), a natural photodynamic pigment with strong absorption over the visible light region, as a sensitizer and titanium dioxide as a colloid semiconductor. HB formed a chelate with this colloid semiconductor and exhibited a red-shifted and strongly enhanced absorption in the visible spectrum. Laser photolysis indicated that the electron excitation in the visible absorption band of the chelate resulted in extremely rapid and efficient electron injection from the excited triplet state of the dye into the conduction band of the semiconductor. A transient absorption of cation radical of HB at 570 nm was observed. The appearance of cation radical of HB was characterized by EPR spectrometry: the photoinduced EPR signal was not quenched by oxygen and its intensity decreased in the presence of NaI, a typical hole scavenger. The generation of conduction band electrons in HB-sensitized TiO2 system was also verified by the spin elimination of a stable cyclic nitroxide, 2,2, 6,6-tetramethylpiperidine-1-oxyl (TEMPO), and by the reduction of methyl viologen (MV2+) to its radical MV.  相似文献   

19.
The hypothesis that mitochondria damaged during complete cerebral ischemia generate increased amounts of superoxide anion radical and hydrogen peroxide (H2O2) upon postischemic reoxygenation has been tested. In rat brain mitochondria, succinate supported H2O2 generation, whereas NADH-linked substrates, malate plus glutamate, did so only in the presence of respiratory chain inhibitors. Succinate-supported H2O2 generation was diminished by rotenone and the uncoupler carbonyl cyanide m-chlorphenylhydrazone and enhanced by antimycin A and increased oxygen tensions. When maximally reduced, the NADH dehydrogenase and the ubiquinone-cytochrome b regions of the electron transport chain are sources of H2O2. These studies suggest that a significant portion of H2O2 generation in brain mitochondria proceeds via the transfer of reducing equivalents from ubiquinone to the NADH dehydrogenase portion of the electron transport chain. Succinate-supported H2O2 generation by mitochondria isolated from rat brain exposed to 15 min of postdecapitative ischemia was 90% lower than that of control preparations. The effect of varying oxygen tensions on H2O2 generation by postischemic mitochondrial preparations was negligible compared with the increased H2O2 generation measured in control preparations. Comparison of the effects of respiratory chain inhibitors and oxygen tension on succinate-supported H2O2 generation suggests that the ability for reversed electron transfer is impaired during ischemia. These data do not support the hypothesis that mitochondrial free radical generation increases during postischemic reoxygenation.  相似文献   

20.
To improve the water solubility and red absorption of the parent hypocrellin B (HB), the complex of HB with aluminum ion has been first synthesized in high yield. The photodynamic action of Al3+-HB, especially the generation mechanism of active species, ([Al3+-HB]·-, O·-2 and 1O2) was studied using electron paramagnetic resonance (EPR) and spectrophotometric methods. In the deoxygenated DMSO solution of Al3+-HB, the semiquinone anion radical of Al3+-HB is photogenerated via the self-electron transfer between the excited and ground state species. The presence of electron donor significantly promotes the reduction of Al3+-HB. When oxygen is present, superoxide anion radical (O·-2) is formed via the electron transfer from [Al3+-HB]·- to the ground state molecular oxygen. Singlet oxygen (1O2) can be produced via the energy transfer from triplet Al3+-HB to ground state oxygen molecules. Furthermore, it is very significant that the accumulation of [Al3+-HB]·- would replace that of O·-2 or 1O2 with the consumption of oxygen in the sealed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号