首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingolipids of the nucleus and their role in nuclear signaling   总被引:4,自引:0,他引:4  
Sphingolipids have important signaling and regulatory roles in the nuclei of all vertebrate cells examined to date. Sphingomyelin (SM) is the most abundant of this group and occurs in the nuclear envelope (NE) as well as intranuclear sites. The primary product of SM metabolism is ceramide, whose release by nuclear sphingomyelinase triggers apoptosis and other metabolic changes in the nucleus. Further catabolism results in free fatty acid and sphingosine formation, the latter being capable of conversion to sphingosine phosphate by action of a specific nuclear kinase. Finally, glycosphingolipids such as gangliosides occur in the NE where GM1, one member of the gangliotetraose family, influences Ca(2+) flux by activation of a Na(+)/Ca(2+) exchanger located in the inner membrane of the NE. The tightly associated GM1/exchanger complex was shown to exert a cytoprotective role in neurons and other cell types, as absence of this nuclear complex rendered cells vulnerable to apoptosis. A striking example of this mode of Ca(2+) regulation is the greatly enhanced seizure activity in knockout mice lacking gangliotetraose gangliosides, involving programmed cell death in the CA3 region of the hippocampus. In this model, Ca(2+) homeostasis was restored most effectively with LIGA-20, a membrane-permeant derivative of GM1 that entered the NE and activated the nuclear Na(+)/Ca(2+) exchanger.  相似文献   

2.
The nuclear envelope (NE) enclosing the cell nucleus, although morphologically and chemically distinct from the plasma membrane, has certain features in common with the latter including the presence of GM1 as an important modulatory molecule. This ganglioside influences Ca(2+) flux across both membranes, but by quite different mechanisms. GM1 in the NE contributes to regulation of nuclear Ca(2+) through potentiation of a Na(+)/Ca(2+) exchanger in the inner nuclear membrane, whereas in the cell membrane, it regulates cytosolic Ca(2+) through modulation of a nonvoltage-gated Ca(2+) channel. Studies with neuroblastoma cells suggest GM1 concentration becomes elevated in the NE with onset of axonogenesis. However, the nuclear GM1/exchanger complex is not limited to neuronal cells but also occurs in NE of astrocytes, C6 cells, and certain non-neural cells. Immunoprecipitation and immunoblot experiments have shown high affinity association of the nuclear Na(+)/Ca(2+) exchanger with GM1, in contrast to Na(+)/Ca(2+) exchangers of the plasma membrane, which bind GM1 less avidly or not at all. This is believed to be due to different isoforms of the exchanger and a difference in topology of GM1 relative to the large inner loop of the exchanger in the 2 membranes. Cultured neurons from mice genetically engineered to lack GM1 suffered Ca(2+) dysregulation as seen in their high vulnerability to Ca(2+)-induced apoptosis. They were rescued by GM1 and more effectively by LIGA20, a membrane-permeant derivative of GM1. The mutant animals were highly susceptible to kainate-induced seizures, which are also a reflection of Ca(2+) dysregulation. The seizures were effectively attenuated by LIGA20 in parallel with the ability of this agent to enter brain cells, insert into the NE, and potentiate Na(+)/Ca(2+) exchange activity in the nucleus. The Na(+)/Ca(2+) exchanger of the NE, in association with nuclear GM1, is thus seen contributing to independent regulation of Ca(2+) by the nucleus in a manner that provides cytoprotection against Ca(2+)-induced apoptosis.  相似文献   

3.
The original concept of gangliosides as localized components of the plasma membrane has broadened in recent years with recognition of their presence in various intracellular pools as well. The nuclear envelope (NE), consisting of two unique membranes, is one such structure shown to contain members of the gangliotetraose family and possibly other sialoglycolipids. GM1 situated in the inner membrane of the NE is tightly associated with a Na+/Ca2+ exchanger whose activity it potentiates in the transfer of Ca2+ from nucleoplasm to the NE lumen. This is in contrast to Na+/Ca2+ exchangers of the plasma membrane which bind GM1 less avidly or not at all. This is believed due to different isoforms of exchanger, and a difference in topology of the exchanger relative to GM1. Cultured neurons from mice genetically engineered to lack gangliotetraose gangliosides such as GM1 were highly vulnerable to Ca2+-induced apoptosis. They were rescued to some extent by GM1 but more effectively by LIGA-20, a membrane-permeant derivative of GM1 that traverses the plasma membrane more effectively than GM1 and inserts into the NE. As further indication of Ca2+ dysregulation, the mutant mice were highly susceptible to kainite-induced seizures which were attenuated by LIGA-20. This correlated with the ability of LIGA-20 to cross the blood-brain barrier, enter brain cells, insert into the NE, and potentiate the nuclear exchanger. GM1 in the NE, in association with nuclear Na+/Ca2+ exchanger, is thus seen as contributing to Ca2+ regulation within the nucleus and in the process exerting a cytoprotective role.  相似文献   

4.
Our previous study showed an impaired regulation of Ca(2+) homeostasis in cultured cerebellar granule neurons (CGN) from neonatal mice lacking GM2, GD2 and all gangliotetraose gangliosides, due to disruption of the GM2/GD2 synthase (GalNAc-T) gene. In the presence of depolarizing concentration (55 mM) K(+), these cells showed persistent elevation of intracellular Ca(2+) ([Ca(2+)]( i )) leading to apoptosis and cell destruction. This was in contrast to CGN from normal littermates whose survival was enhanced by high K(+). In this study we demonstrate that glutamate has the same effect as K(+) on CGN from these ganglioside-deficient knockout (KO) mice and that apoptosis in both cases is averted by exogenous GM1. Even more effective rescue was obtained with LIGA20, a semi-synthetic derivative of GM1. LC(50) of glutamate in the KO cells was 3.1 microM, compared to 46 microM in normal CGN. [Ca(2+)]( i ) measurement with fura-2 revealed no difference in glutamate-stimulated Ca(2+) influx between the 2 cell types. However, reduction of [Ca(2+)]( i ) following application of Mg(2+) was significantly impaired in the mutant CGN. The rescuing effects of exogenous GM1 and LIGA20 corresponded to their ability to restore Ca(2+) homeostasis. The greater potency of LIGA20 is attributed to its greater membrane permeability with resultant ability to insert into both plasma and nuclear membranes at low concentration (相似文献   

5.
Calcium homeostasis is crucial for the proper function of cardiac cells. Since the Na(+)/Ca(2+) exchanger is an important modulator of calcium homeostasis especially in the heart, the objective of this study was to investigate the effect of immobilization stress on the high capacity Na(+)/Ca(2+) exchanger in rat heart ventricles and atria. Repeated immobilization stress increased both the mRNA and the protein level and the activity of the Na(+)/Ca(2+) exchanger in the left, but not the right ventricle of rat heart. Since corticosterone is rapidly increased during the stress stimulus, it might be assumed that mRNA of the Na(+)/Ca(2+) exchanger is increased through a glucocorticoid responsive element. However, we have found that cortisol did not change the Na(+)/Ca(2+) exchanger at the mRNA or protein levels. These results clearly show that this effect of stress is not mediated via cortisol.  相似文献   

6.
Na(+)/Ca(2+) exchange activity in Chinese hamster ovary cells expressing the bovine cardiac Na(+)/Ca(2+) exchanger was inhibited by the short chain ceramide analogs N-acetylsphingosine and N-hexanoylsphingosine (5-15 micrometer). The sphingolipids reduced exchange-mediated Ba(2+) influx by 50-70% and also inhibited the Ca(2+) efflux mode of exchange activity. The biologically inactive ceramide analog N-acetylsphinganine had only modest effects on exchange activity. Cells expressing the Delta(241-680) and Delta(680-685) deletion mutants of the Na(+)/Ca(2+) exchanger were not inhibited by ceramide; these mutants show defects in both Na(+)-dependent and Ca(2+)-dependent regulatory behavior. Another mutant, which was defective only in Na(+)-dependent regulation, was as sensitive to ceramide inhibition as the wild-type exchanger. Inhibition of exchange activity by ceramide was time-dependent and was accelerated by depletion of internal Ca(2+) stores. Sphingosine (2.5 micrometer) also inhibited the Ca(2+) influx and efflux modes of exchange activity in cells expressing the wild-type exchanger; sphingosine did not affect Ba(2+) influx in the Delta(241-680) mutant. The effects of the exogenous sphingolipids were reproduced by blocking cellular ceramide utilization pathways, suggesting that exchange activity is inhibited by increased levels of endogenous ceramide and/or sphingosine. We propose that sphingolipids impair Ca(2+)-dependent activation of the exchanger and that in cardiac myocytes, this process serves as a feedback mechanism that links exchange activity to the diastolic concentration of cytosolic Ca(2+).  相似文献   

7.
The neuroblastoma x glioma NG108-15 hybrid cell line, a widely used model for the study of neuronal differentiation, contains a variety of gangliosides including GM1 and its sialosylated derivative, GD1a. To investigate the role of these a-series gangliotetraose gangliosides in neuritogenesis, we have obtained a mutated subclone of NG108-15 that is deficient in that family of gangliosides. NG108-15 cells were grown in the presence of cholera toxin, which killed the large majority of cells, and from the cholera-resistant survivors we isolated a clone, NG-CR72, that lacks GM1 and GD1a in the plasma and nuclear membranes. GM2 concentration was significantly higher in the plasma membrane. Enzyme assay indicated deficiency of UDP-Gal:GM2 galactosyltransferase (GM1 synthase), which was confirmed by incorporation studies with [3H]sphingosine. These cells resembled wild-type NG108-15 in extending dendritic processes in response to dendritogenic agents (retinoic acid, dibutyryl cAMP) but responded aberrantly to axonogenic stimuli (KCl, ionomycin) by extending unstable neurites that showed the cytoskeletal staining characteristic of dendrites. Moreover, mutant cells treated with the Ca2+ elevating axonogenic agents underwent apoptosis over time, attributed to dysfunction of Ca2+ regulatory mechanisms normally mediated by GM1. Such agents caused dramatic and sustained elevation of intracellular Ca2+ in mutant cells, in contrast to modest and temporary elevation in wild-type cells. Exogenous GM1, inserted into the plasma membrane, had no discernable protective effect on NG-CR72 cells whereas LIGA-20, a membrane-permeant derivative of GM1 that entered both plasma and nuclear membranes, blocked apoptosis, permitted extension of stable neurites, and attenuated the abnormal elevation of intracellular Ca2+.  相似文献   

8.
Transforming growth factor (TGF)-beta and des-Arg(10)-kallidin stimulate the expression of connective tissue growth factor (CTGF), a matrix signaling molecule that is frequently overexpressed in fibrotic disorders. Because the early signal transduction events regulating CTGF expression are unclear, we investigated the role of Ca(2+) homeostasis in CTGF mRNA expression in TGF-beta1- and des-Arg(10)-kallidin-stimulated human lung myofibroblasts. Activation of the kinin B1 receptor with des-Arg(10)-kallidin stimulated a rise in cytosolic Ca(2+) that was extracellular Na(+)-dependent and extracellular Ca(2+)-dependent. The des-Arg(10)-kallidin-stimulated increase of cytosolic Ca(2+) was blocked by KB-R7943, a specific inhibitor of Ca(2+) entry mode operation of the plasma membrane Na(+)/Ca(2+) exchanger. TGF-beta1 similarly stimulated a KB-R7943-sensitive increase of cytosolic Ca(2+) with kinetics distinct from the des-Arg(10)-kallidin-stimulated Ca(2+) response. We also found that KB-R7943 or 2',4'-dichlorobenzamil, an amiloride analog that inhibits the Na(+)/Ca(2+) exchanger activity, blocked the TGF-beta1- and des-Arg(10)-kallidin-stimulated increases of CTGF mRNA. Pretreatment with KB-R7943 also reduced the basal and TGF-beta1-stimulated levels of alpha1(I) collagen and alpha smooth muscle actin mRNAs. These data suggest that, in addition to regulating ion homeostasis, Na(+)/Ca(2+) exchanger acts as a signal transducer regulating CTGF, alpha1(I) collagen, and alpha smooth muscle actin expression. Consistent with a more widespread role for Na(+)/Ca(2+) exchanger in fibrogenesis, we also observed that KB-R7943 likewise blocked TGF-beta1-stimulated levels of CTGF mRNA in human microvascular endothelial and human osteoblast-like cells. We conclude that Ca(2+) entry mode operation of the Na(+)/Ca(2+) exchanger is required for des-Arg(10)-kallidin- and TGF-beta1-stimulated fibrogenesis and participates in the maintenance of the myofibroblast phenotype.  相似文献   

9.
Design, synthesis and structure-activity relationships for 3,4-dihydro-2(1H)-quinazolinone derivatives with the inhibitory activities of the Na(+)/Ca(2+) exchanger are discussed. These studies based on lead compound 1a lead to the discovery of a structurally novel and highly potent inhibitor against the Na(+)/Ca(2+) exchanger 4f (SM-15811), which directly inhibited the Na(+)-dependent Ca(2+) influx via the Na(+)/Ca(2+) exchanger in cardiomyocytes with a high potency.  相似文献   

10.
Palty R  Sekler I 《Cell calcium》2012,52(1):9-15
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification.  相似文献   

11.
Phospholemman (PLM) is a small sarcolemmal protein that modulates the activities of Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger (NCX), thus contributing to the maintenance of intracellular Na(+) and Ca(2+) homeostasis. We characterized the expression and subcellular localization of PLM, NCX, and the Na(+)/K(+)-ATPase alpha1-subunit during perinatal development. Western blotting demonstrates that PLM (15kDa), NCX (120kDa), and Na(+)/K(+)-ATPase alpha-1 (approximately 100kDa) proteins are all more than 2-fold higher in ventricular membrane fractions from newborn rabbit hearts (1-4-day old) compared to adult hearts. Our immunocytochemistry data demonstrate that PLM, NCX, and Na(+)/K(+)-ATPase are all expressed at the sarcolemma of newborn ventricular myocytes. Taken together, our data indicate that PLM, NCX, and Na(+)/K(+)-ATPase alpha-1 proteins have similar developmental expression patterns in rabbit ventricular myocardium. Thus, PLM may have an important regulatory role in maintaining cardiac Na(+) and Ca(2+) homeostasis during perinatal maturation.  相似文献   

12.
The activities of both sarcolemmal (SL) Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchanger, which maintain the intracellular cation homeostasis, have been shown to be depressed in heart failure due to myocardial infarction (MI). Because the renin-angiotensin system (RAS) is activated in heart failure, this study tested the hypothesis that attenuation of cardiac SL changes in congestive heart failure (CHF) by angiotensin-converting enzyme (ACE) inhibitors is associated with prevention of alterations in gene expression for SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchanger. CHF in rats due to MI was induced by occluding the coronary artery, and 3 wk later the animals were treated with an ACE inhibitor, imidapril (1 mg.kg(-1).day(-1)), for 4 wk. Heart dysfunction and cardiac hypertrophy in the infarcted animals were associated with depressed SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities. Protein content and mRNA levels for Na(+)/Ca(2+) exchanger as well as Na(+)-K(+)-ATPase alpha(1)-, alpha(2)- and beta(1)-isoforms were depressed, whereas those for alpha(3)-isoform were increased in the failing heart. These changes in SL activities, protein content, and gene expression were attenuated by treating the infarcted animals with imidapril. The beneficial effects of imidapril treatment on heart function and cardiac hypertrophy as well as SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities in the infarcted animals were simulated by enalapril, an ACE inhibitor, and losartan, an angiotensin receptor antagonist. These results suggest that blockade of RAS in CHF improves SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities in the failing heart by preventing changes in gene expression for SL proteins.  相似文献   

13.
14.
Ca(2+), which enters cardiac myocytes through voltage-dependent Ca(2+) channels during excitation, is extruded from myocytes primarily by the Na(+)/Ca(2+) exchanger (NCX1) during relaxation. The increase in intracellular Ca(2+) concentration in myocytes by digitalis treatment and after ischemia/reperfusion is also thought to result from the reverse mode of the Na(+)/Ca(2+) exchange mechanism. However, the precise roles of the NCX1 are still unclear because of the lack of its specific inhibitors. We generated Ncx1-deficient mice by gene targeting to determine the in vivo function of the exchanger. Homozygous Ncx1-deficient mice died between embryonic days 9 and 10. Their hearts did not beat, and cardiac myocytes showed apoptosis. No forward mode or reverse mode of the Na(+)/Ca(2+) exchange activity was detected in null mutant hearts. The Na(+)-dependent Ca(2+) exchange activity as well as protein content of NCX1 were decreased by approximately 50% in the heart, kidney, aorta, and smooth muscle cells of the heterozygous mice, and tension development of the aortic ring in Na(+)-free solution was markedly impaired in heterozygous mice. These findings suggest that NCX1 is required for heartbeats and survival of cardiac myocytes in embryos and plays critical roles in Na(+)-dependent Ca(2+) handling in the heart and aorta.  相似文献   

15.
We sought to determine the mechanisms for hyperactivity and abnormal platelet Ca(2+) homeostasis in diabetes. The glycosylated Hb (HbA(1c)) level was used as an index of glycemic control. Human platelets were loaded with Ca- green-fura red, and cytosolic Ca(2+) ([Ca(2+)](i)) and aggregation were simultaneously measured. In the first series of experiments, the platelets from diabetic and normal subjects were compared for the ability to release Ca(2+) or to promote Ca(2+) influx. A potent and relatively specific inhibitor of Na(+)/Ca(2+) exchange, 5-(4-chlorobenzyl)-2',4'-dimethylbenzamil (CB-DMB), increased the second phase of thrombin-induced Ca(2+) response, suggesting that the Na(+)/Ca(2+) exchanger works in the forward mode to mediate Ca(2+) efflux. In contrast, in the platelets from diabetics, CB-DMB decreased the Ca(2+) response, indicating that the Na(+)/Ca(2+) exchanger works in the reverse mode to mediate Ca(2+) influx. In the second series of experiments we evaluated the direct effect of hyperglycemia on platelets in vitro. We found that thrombin- and collagen-induced increases in [Ca(2+)](i) and aggregation were not acutely affected by high glucose concentrations of 45 mM. However, when the platelet-rich plasma was incubated with a high glucose concentration at 37 degrees C for 24 h, the second phase after thrombin activation was inhibited by CB-DMB. In addition, collagen-stimulated [Ca(2+)](i) response and aggregation were also increased. Thus in diabetes the direction and activity of the Na(+)/Ca(2+) exchanger is changed, which may be one of the mechanisms for the increased platelet [Ca(2+)](i) and hyperactivity. Prolonged hyperglycemia in vitro can induce similar changes, suggesting hyperglycemia per se may be the factor responsible for the platelet hyperactivity in diabetes.  相似文献   

16.
In cardiomyocytes, a major decrease in the level of sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) can severely impair systolic and diastolic functions. In mice with cardiomyocyte-specific conditional excision of the Serca2 gene (SERCA2 KO), end-stage heart failure developed between four and seven weeks after gene deletion combined with [Na(+)](i) elevation and intracellular acidosis. In this study, to investigate the underpinning changes in Ca(2+) dynamics and metabolic homeostasis, we developed data-driven mathematical models of Ca(2+) dynamics in the ventricular myocytes of the control, four-week, and seven-week SERCA2 knockout (KO) mice. The seven-week KO model showed that elevated [Na(+)](i) was due to increased Na(+) influxes through the Na(+)/Ca(2+) exchanger (NCX) and the Na(+)/H(+) exchanger, with the latter exacerbated by intracellular acidosis. Furthermore, NCX upregulation in the seven-week KO model resulted in increased ATP consumption for ion transport. Na(+) accumulation in the SERCA KO due to NCX upregulation and intracellular acidosis potentially play a role in the development of heart failure, by initiating a reinforcing cycle involving: a mismatch between ATP demand and supply; an increasingly compromised metabolism; a decreased pH(i); and, finally, an even greater [Na(+)](i) elevation.  相似文献   

17.
Phagocytosis and the ensuing NADPH-mediated respiratory burst are important aspects of microglial activation that require calcium ion (Ca(2+)) influx. However, the specific Ca(2+) entry pathway(s) that regulates this mechanism remains unclear, with the best candidates being surface membrane Ca(2+)-permeable ion channels or Na(+)/Ca(2+) exchangers. In order to address this issue, we used quantitative real-time RT-PCR to assess mRNA expression of the Na(+)/Ca(2+) exchangers, Slc8a1-3/NCX1-3, before and after phagocytosis by rat microglia. All three Na(+)/Ca(2+) exchangers were expressed, with mRNA levels of NCX1 > NCX3 > NCX2, and were unaltered during the one hour phagocytosis period. We then carried out a biophysical characterization of Na(+)/Ca(2+) exchanger activity in these cells. To investigate conditions under which Na(+)/Ca(2+) exchange was functional, we used a combination of perforated patch-clamp analysis, fluorescence imaging of a Ca(2+) indicator (Fura-2) and a Na(+) indicator (SBFI), and manipulations of membrane potential and intracellular and extracellular ions. Then, we used a pharmacological toolbox to compare the contribution of Na(+)/Ca(2+) exchange with candidate Ca(2+)-permeable channels, to the NADPH-mediated respiratory burst that was triggered by phagocytosis. We find that inhibiting the reversed mode of the Na(+)/Ca(2+) exchanger with KB-R7943, dose dependently reduced the phagocytosis-stimulated respiratory burst; whereas, blockers of store-operated Ca(2+) channels or L-type voltage-gated Ca(2+) channels had no effect. These results provide evidence that Na(+)/Ca(2+) exchangers are potential therapeutic targets for reducing the bystander damage that often results from microglia activation in the damaged CNS.  相似文献   

18.
The superfamily of cation/Ca(2+) exchangers includes both Na(+)/Ca(2+) exchangers (NCXs) and Na(+)/Ca(2+),K(+) exchangers (NCKX) as the families characterized in most detail. These Ca(2+) transporters have prominent physiological roles. For example, NCX and NCKX are important in regulation of cardiac contractility and visual processes, respectively. The superfamily also has a large number of members of the YrbG family expressed in prokaryotes. However, no members of this family have been functionally expressed, and their transport properties are unknown. We have expressed, purified, and characterized a member of the YrbG family, MaX1 from Methanosarcina acetivorans. MaX1 catalyzes Ca(2+) uptake into membrane vesicles. The Ca(2+) uptake requires intravesicular Na(+) and is stimulated by an inside positive membrane potential. Despite very limited sequence similarity, MaX1 is a Na(+)/Ca(2+) exchanger with kinetic properties similar to those of NCX. The availability of a prokaryotic Na(+)/Ca(2+) exchanger should facilitate structural and mechanistic investigations.  相似文献   

19.
The Na(+)/Ca(2+) exchanger, a major mechanism by which cells extrude calcium, is involved in several physiological and physiopathological interactions. In this work we have used the dialyzed squid giant axon to study the effects of two oxidants, SIN-1-buffered peroxynitrite and hydrogen peroxide (H(2)O(2)), on the Na(+)/Ca(2+) exchanger in the absence and presence of MgATP upregulation. The results show that oxidative stress induced by peroxynitrite and hydrogen peroxide inhibits the Na(+)/Ca(2+) exchanger by impairing the intracellular Ca(2+) (Ca(i)(2+))-regulatory sites, leaving unharmed the intracellular Na(+)- and Ca(2+)-transporting sites. This effect is efficiently counteracted by the presence of MgATP and by intracellular alkalinization, conditions that also protect H(i)(+) and (H(i)(+) + Na(i)(+)) inhibition of Ca(i)(2+)-regulatory sites. In addition, 1 mM intracellular EGTA reduces oxidant inhibition. However, once the effects of oxidants are installed they cannot be reversed by either MgATP or EGTA. These results have significant implications regarding the role of the Na(+)/Ca(2+) exchanger in response to pathological conditions leading to tissue ischemia-reperfusion and anoxia/reoxygenation; they concur with a marked reduction in ATP concentration, an increase in oxidant production, and a rise in intracellular Ca(2+) concentration that seems to be the main factor responsible for cell damage.  相似文献   

20.
Enhanced gene expression of the Na(+)/Ca(2+) exchanger in failing hearts may be a compensatory mechanism to promote influx and efflux of Ca(2+), despite impairment of the sarcoplasmic reticulum (SR). To explore this, we monitored intracellular calcium (Ca(i)(2+)) and cardiac function in mouse hearts engineered to overexpress the Na(+)/Ca(2+) exchanger and subjected to ischemia and hypoxia, conditions known to impair SR Ca(i)(2+) transport and contractility. Although baseline Ca(i)(2+) and function were similar between transgenic and wild-type hearts, significant differences were observed during ischemia and hypoxia. During early ischemia, Ca(i)(2+) was preserved in transgenic hearts but significantly altered in wild-type hearts. Transgenic hearts maintained 40% of pressure-generating capacity during early ischemia, whereas wild-type hearts maintained only 25% (P < 0.01). During hypoxia, neither peak nor diastolic Ca(i)(2+) decreased in transgenic hearts. In contrast, both peak and diastolic Ca(i)(2+) decreased significantly in wild-type hearts. The decline of Ca(i)(2+) was abbreviated in hypoxic transgenic hearts but prolonged in wild-type hearts. Peak systolic pressure decreased by nearly 10% in hypoxic transgenic hearts and >25% in wild-type hearts (P < 0.001). These data demonstrate that enhanced gene expression of the Na(+)/Ca(2+) exchanger preserves Ca(i)(2+) homeostasis during ischemia and hypoxia, thereby preserving cardiac function in the acutely failing heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号