首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mice deficient in progesterone receptor (PR), follicles of ovulatory size develop but fail to ovulate, providing evidence for an essential role for progesterone and PR in ovulation in mice. However, little is known about the expression and regulation of PR mRNA in preovulatory follicles of ruminant species. One objective of this study was to determine whether and when PR mRNA is expressed in bovine follicular cells during the periovulatory period. Luteolysis and the LH/FSH surge were induced with prostaglandin F(2alpha) and a GnRH analogue, respectively, and the preovulatory follicle was obtained at 0, 3.5, 6, 12, 18, or 24 h after GnRH treatment. RNase protection assays revealed a transient increase in levels of PR mRNA, which peaked at 6 h after GnRH and declined to the time 0 value by 12 h and a second increase at 24 h. The second objective was to investigate the mechanisms that regulate PR mRNA expression through in vitro studies on follicular cells of preovulatory follicles obtained before the LH/FSH surge. Theca and granulosa cells were isolated and cultured with or without a luteinizing dose of LH or FSH, progesterone, LH + progesterone, or LH + antiprogestin (RU486). Levels of PR mRNA increased in a time-dependent manner in granulosa cells cultured with LH or FSH and in theca cells cultured with LH, peaking at 10 h of culture. In contrast, progesterone (200 ng/ml) did not upregulate mRNA for its own receptor, and neither progesterone nor RU486 affected LH-stimulated PR mRNA accumulation. Furthermore, RU486 completely blocked LH-stimulated expression of oxytocin mRNA, indicating that PR induced by LH in vitro is functional. These results show that the gonadotropin surge induces a rapid and transient increase in expression of PR mRNA in both theca and granulosa cells of bovine periovulatory follicles followed by a second rise close to the time of ovulation and that the first increase in PR mRNA can be mimicked in vitro by gonadotropins but not by progesterone. These results suggest multiple and time-dependent roles for progesterone and PR in the regulation of periovulatory events in cattle.  相似文献   

2.
Although androgens have been implicated in follicular atresia, ovarian follicular androgen synthesis is required for preovulatory follicular growth. To localize the site(s) of androgen biosynthesis and to obtain a better understanding of the regulation of the androgenic pathway(s) in rat ovarian follicles we examined the relative abilities of developing follicles to accumulate specific androgens [testosterone (T) and dihydrotestosterone (DHT)] using both radioimmunoassay (RIA) and 3H-substrate metabolism techniques. Small antral and preovulatory follicles were obtained from control or human chorionic gonadotropin (hCG)-primed immature rats, respectively (Richards and Bogovich, 1982). Small antral follicles, theca and granulosa cells produced little immunoassayable androgen (T + DHT) when incubated with or without 8-bromo-cAMP. In contrast, preovulatory follicles and theca produced more androgen than small antral tissues and in a manner acutely stimulable by cAMP. Granulosa cells produced little androgen under these conditions. Inclusion of [3H] androstenedione in the incubates yielded increased accumulation of [3H] T and [3H] DHT for all small antral and preovulatory tissues. Indeed, granulosa cells from both small antral and preovulatory follicles possessed a remarkable ability to accumulate [3H] T. This ability was not altered by hypophysectomy or subsequent treatment with estradiol and/or follicle-stimulating hormone (FSH). These results suggest that 17-ketosteroid reductase may be a constitutive enzyme in granulosa cells.  相似文献   

3.
A Makris  D Olsen  K J Ryan 《Steroids》1983,42(6):641-651
Isolated hamster granulosa cells and theca from preovulatory follicles were incubated in vitro for 2 and 6 h in the absence/or presence of LH and steroid substrates. The purpose of the experiments was to determine, in theca, the relative activities of the delta 5 and delta 4 pathways under controlled conditions, and to compare the ability of granulosa cells and theca to form progesterone from exogenous pregnenolone. The results of the experiments show that the delta 5 pathway in theca predominates before and up to 2 h after LH stimulation. The delayed effect of LH after 2 h is a switch from delta 5 to delta 4 as the major metabolic pathway. Progesterone formation from exogenous pregnenolone is 7 to 10 times greater in unstimulated granulosa cells than in theca. Acute effects of LH lead to increased conversion of exogenous pregnenolone to progesterone in granulosa cells but not theca. LH does, however, acutely stimulate the thecal conversion of DHEA to androstenedione. The longer term effect of LH in both cell types is to increase pregnenolone conversion to progesterone.  相似文献   

4.
A Makris  K J Ryan 《Steroids》1980,35(1):53-64
The comparative ability of granulosa cells and theca of the hamster preovulatory follicle to produce androgens in vitro from endogenous and exogenous substrates was assessed. The results indicate that theca are the major source of follicular androstenedione, but that the granulosa cells may be the major source of follicular testosterone. Theca and granulosa cells accumulate comparable amounts of dihydrotestosterone from exogenous androstenedione and testosterone and both may be a significant source of follicular DHT. LH stimulates the conversion of progesterone and 17 alpha-OH progesterone to androstenedione, testosterone and DHT in theca. LH does not stimulate the conversion of androstenedione to testosterone or DHT, and that of testosterone to DHT in either granulosa cells or theca. FSH, in granulosa cells but not in theca, stimulates the conversion of adrostenedione to testosterone but it has no effect in DHT accumulation from exogenous testosterone.  相似文献   

5.
6.
In Experiment 1, the influence of exogenous GH on steroid secretion by granulosa and theca interna cells recovered from small (1-3 mm), medium (4-6 mm) and large (8-12 mm) follicles was tested. In the second experiment, theca cells (Tc) and granulosa cells (Gc) obtained from large follicles were cultured separately or in two types, Tc/Gc co-culture, where both types of cells were mixed in one well or Gc and Tc were separated by cell culture membrane inserts. In the third experiment, the influence of GH on the morphology of Gc and Tc cells and activity of Delta(5),3beta-hydroxysteroid dehydrogenase (3beta-HSD) was studied. Cells were grown in the control medium (M199+5% of calf serum) or supplemented with 100 ng/ml GH. Testosterone (10(-7) M) was added as the aromatase substrate to granulosa cells cultures. The media were assayed after 48 h of culture for progesterone and oestradiol by RIA. GH added to the culture media had no effect on oestradiol and progesterone secretion by granulosa cells isolated from small and medium follicles while it stimulated both oestradiol and progesterone secretion by Gc isolated from large preovulatory follicles. A stimulatory effect on oestradiol secretion by Tc isolated from all size follicles was observed. GH did not stimulate progesterone secretion by Tc isolated from small follicles but stimulated progesterone secretion by Tc isolated from medium and large preovulatory follicles. Both co-culture systems exhibited synergistic effect on oestradiol secretion. The stimulatory effect on progesterone secretion under the influence of GH was observed in Gc cultured alone and Tc cultured alone. In contrast, the secretion of progesterone was attenuated in both co-culture systems and the addition of GH further augmented this attenuation. A statistically significant increase in oestradiol secretion was observed in all culture conditions. The addition of GH to the culture medium stimulated the activity of 3beta-HSD compared with the control culture from both types of cells. In conclusion, the present studies indicate that there are direct and follicular development stage dependent actions of GH on steroidogenesis of porcine follicular cells.  相似文献   

7.
Summary The observation that tissue-type plasminogen activator (tPA) activity increased dramatically in preovulatory follicles has led to the hypothesis that plasminogen activation is causally related to follicle rupture. With immunohistochemistry, we have studied the appearance of tPA in ovaries of immature rats induced to ovulate and in adult cycling rats. Treatment of immature female rats with a single dose of pregnant mare serum gonadotropin (PMSG) induced follicular maturation. A subsequent human chorionic gonadotropin (hCG) injection resulted in follicle rupture 12–14 h later. PMSG treatment alone did not induce appearance of tPA-immunoreactive cells in any ovarian compartment. After hCG stimulation, however, theca cells, granulosa cells, and oocytes of pre- and postovulatory follicles displayed distinct tPA immunoreactivity. Fibroblastlike cells in the theca layers and tunica albuginea of the follicle apex also demonstrated localized cytoplasmic tPA reactivity. In addition to tPA synthesis in preovulatory follicles, hCG also induced tPA staining in the theca (but not granulosa) layers of non-ovulatory follicles. At 24 h after hCG treatment, there was a marked tPA staining in developing corpora lutea, ovulated ova, and oviductal epithelium. Ovaries from regularly cycling adult rats displayed a similar ovulation-related pattern of tPA immunostaining. The appearance of tPA in different cell types of the preovulatory follicle and in the fibroblast-like cells at the follicle apex, strengthens the hypothesis of a direct involvement of tPA in follicle rupture. Presence of tPA in postovulatory oocytes, cumulus cells, and surrounding oviductal epithelium may also indicate a role for tPA in the transfer of eggs in the oviduct.This work was supported by NIH Research Grants HD-14084; 12303  相似文献   

8.
9.
The avidin-biotin immunoperoxidase method and antisera to purified porcine relaxin were used to localize relaxin in sections of follicles from pregnant mare's serum gonadotropin (PMSG)/human chorionic gonadotropin (hCG)-primed pigs during preovulatory development. Prepubertal pigs were treated i.m. with PMSG (750 IU) and 72 h later with hCG (500 IU) to induce follicular development and ovulation. Follicles were collected from untreated gilts or from gilts 24, 48, 60, 72, 84, 96, or 108 h after PMSG treatment. Light immunostaining in the theca interna was observed early in follicular development, at 48 and 60 h post-PMSG. At 72 h post-PMSG, relaxin immunostaining in the theca interna of the preovulatory follicle was more intense. After hCG treatment, the intense thecal immunostaining persisted and was apparent 84 and 96 h after PMSG. At about 6 h prior to expected ovulation (108 h post-PMSG), there was thinning of the follicle wall and a reduction in relaxin immunostaining in the theca interna. Immunoactive relaxin was not detected in follicles from untreated gilts, follicles 24 h post-PMSG, small healthy or atretic follicles, or in granulosa cells, theca externa or ovarian stroma, at any of the time points studied. These studies support the hypothesis that the theca interna is the primary source of follicular relaxin and provide further evidence for a paracrine role for relaxin in the ovulatory process.  相似文献   

10.
Dispersed granulosa and theca interna cells were recovered from follicles of prepubertal gilts at 36, 72 and 108 h after treatment with 750 i.u. PMSG, followed 72 h later with 500 i.u. hCG to stimulate follicular growth and ovulation. In the absence of aromatizable substrate, theca interna cells produced substantially more oestrogen than did granulosa cells. Oestrogen production was increased markedly in the presence of androstenedione and testosterone in granulosa cells but only to a limited extent in theca interna cells. The ability of both cellular compartments to produce oestrogen increased up to 72 h with androstenedione being the preferred substrate. Oestrogen production by the two cell types incubated together was greater than the sum produced when incubated alone. Theca interna cells were the principal source of androgen, predominantly androstenedione. Thecal androgen production increased with follicular development and was enhanced by addition of pregnenolone or by LH 36 and 72 h after PMSG treatment. The ability of granulosa and thecal cells to produce progesterone increased with follicular development and addition of pregnenolone. After exposure of developing follicles to hCG in vivo, both cell types lost their ability to produce oestrogen. Thecal cells continued to produce androgen and progesterone but no longer responded to LH in vitro. These studies indicate that several functional changes in the steroidogenic abilities of the granulosa and theca interna compartments occur during follicular maturation.  相似文献   

11.
We have observed that levels of the antioxidant glutathione (GSH) and protein levels of the catalytic and modifier subunits of the rate-limiting enzyme in GSH synthesis, GCLc and GCLm, increase in immature rat ovaries after treatment with gonadotropin. The goals of the present studies were to delineate the time course and intraovarian localization of changes in GSH and GCL after pregnant mare's serum gonadotropin (PMSG) and after an ovulatory gonadotropin stimulus. Twenty-four hours after PMSG, there was a shift from predominantly granulosa cell expression of gclm mRNA, and to a lesser extent gclc, to predominantly theca cell expression. GCLc immunostaining increased in granulosa and theca cells and in interstitial cells. Next, prepubertal female rats were primed with PMSG, followed 48 h later by 10 IU of hCG. GCLm protein and mRNA levels increased dramatically from 0 to 4 h after hCG and then declined rapidly. There was minimal change in GCLc. The increase in gclm mRNA expression was localized mainly to granulosa and theca cells of preovulatory follicles. To verify that GCL responds similarly to an endogenous preovulatory gonadotropin surge, we quantified ovarian GCL mRNA levels during the periovulatory period in adult rats. gclm mRNA levels increased after the gonadotropin surge on proestrus and then declined rapidly. Finally, we assessed the effects of gonadotropin on ovarian GCL enzymatic activity. GCL enzymatic activity increased significantly at 48 h after PMSG injection and did not increase further after hCG. These results demonstrate that gonadotropins regulate follicular GCL expression in a follicle stage-dependent manner and in a GCL subunit-dependent manner.  相似文献   

12.
The aim of this study was to investigate the presence and localization of gonadotropin-releasing hormone receptor-I (GnRHRI), gonadotropin receptors (FSHR, LHR), progesterone receptor (PGR), and progesterone receptor membrane-binding component-I (PGRMCI) in the different developmental stages of the rabbit follicle. The ovaries were collected from four healthy New Zealand white rabbits, and the mRNA expression and protein levels of GnRHRI, FSHR, LHR, PGR, and PGRMCI were examined with real-time PCR and immunohistochemistry. The results showed that GnRHRI, FSHR, LHR, PGR, and PGRMCI mRNA was expressed in the ovary; furthermore, we show cell-type specific and follicular development stage-specific expression of these receptors at the protein level. Specifically, all of the receptors were detected in the oocytes from the primordial to the tertiary follicles and in the granulosa and theca cells from the secondary and tertiary follicles. In the mature follicles, all receptors were primarily localized in the granulosa and theca cells. In addition, LHR was also localized in the granulosa cells from the primordial and primary follicles. With follicular development, the expression level of all of the receptors, except GnRHRI, in the follicles showed a tendency to decrease because the area of the follicle increased sharply. The expression level of GnRHRI, FSHR, and PGR in the granulosa and theca cells showed an increasing trend with ongoing follicular development. Interestingly, the expression level of FSHR in the oocytes obviously decreased from the primary to the tertiary follicles, whereas LHR in the oocytes increased from the secondary to tertiary follicles. In conclusion, the expression of GnRHRI, the gonadotropin receptors, PGR, and PGRMCI decreased from the preantral follicles (primordial, primary, and secondary follicles) to the tertiary follicles. The expression of GnRHRI and LHR in the oocytes increased from the secondary to the tertiary follicles, whereas FSHR decreased from the primary to the tertiary follicles. The expression of GnRHRI and PGR in the granulosa and theca cells increased from the secondary to the mature follicles. These observations suggest that these receptors play roles in follicular development and participate in the regulation of follicular development.  相似文献   

13.
Fas antigen is a receptor that triggers apoptosis when bound by Fas ligand (FasL). A role for Fas antigen in follicular atresia was studied in follicles obtained during the first wave of follicular development during the bovine estrous cycle (estrus is Day 0). Granulosa and theca cells were isolated from healthy dominant follicles and the two largest atretic subordinate follicles on Day 5, atretic dominant follicles on Days 10-12, and preovulatory follicles on Day 1. Fas antigen mRNA levels were highest in granulosa cells from subordinate as compared to other follicles, and lowest in theca cells from healthy Day 5 dominant as compared to other follicles. FasL alone had no effect on viability of granulosa or theca cells but became cytotoxic in the presence of interferon-gamma (IFN). IFN has been shown to induce responsiveness to Fas antigen-mediated apoptosis in other cell types. In the presence of IFN, killing of granulosa cells by FasL was greater in subordinate compared to healthy dominant follicles on Day 5, did not differ between healthy and atretic dominant follicles, and was similar in theca among all follicles. Granulosa cells from preovulatory follicles, which had been exposed to the LH surge in vivo, were completely resistant to FasL-induced killing. In summary, Fas antigen expression, and responsiveness to Fas antigen-mediated apoptosis, vary during follicular development.  相似文献   

14.
The currently available evidence points to a possible influence of growth hormone (GH) on avian folliculogenesis, which can be mediated by both hepatic- and ovarian-derived IGF-I. Therefore, the purpose of the present study was to reveal GH-binding sites in granulosa and theca layers of preovulatory follicles and to determine the binding characteristics depending on the degree of follicular maturation and the stage of the ovulatory cycle in the hen. Hens were killed 2 h (stage I), 9 h (stage II), 16 h (stage III), and 23 h (stage IV) after oviposition, and the five largest yellow follicles (from F1 to F5) were removed. GH-binding sites in granulosa and theca layers from F1 to F5 follicles were characterized using a radioreceptor assay. Equilibrium dissociation constants (K(d)) and binding capacities (B(max)) were determined by Scatchard analysis of saturation curves, which revealed a single class of high-affinity GH-binding sites in both theca tissue and granulosa cells. In F1, F2, and F5 follicles, B(max) and K(d) for GH-binding sites in the granulosa layer changed during the ovulatory cycle, decreasing between stages I and III, to increase again at stage IV, with alterations in K(d) being less profound. No significant differences in binding capacities and affinities of GH-binding sites in the theca layer were found between various stages of the cycle. Furthermore, the concentration of GH-binding sites in the granulosa layer rose, whereas that in the theca layer fell with follicular enlargement. These findings indicate the presence of high-affinity GH-binding sites in both granulosa and theca layers of hen preovulatory follicles. Data also demonstrate that GH-binding sites in these tissues are regulated in a tissue-specific manner. Furthermore, the regulation of binding capacity of GH binding in granulosa cells by hormonal factors associated with ovulatory cycle is apparently not dependent on the state of follicular maturation.  相似文献   

15.
It has been suggested that locally produced insulin-like growth factor binding protein 4 (IGFBP4) inhibits ovarian follicular growth and ovulation by interfering with IGF action. According to this hypothesis, IGFBP4-expressing follicles should demonstrate atresia, whereas healthy dominant follicles should be devoid of IGFBP4. Alternatively, according to this view, there could be constitutive expression of the inhibitory IGFBP4 but selective expression of an IGFBP4 protease in dominant follicles, allowing the follicle to mature and ovulate because of degradation of the binding protein. To examine these views concerning the role of IGFBP4 in primate follicular selection, we analyzed cellular patterns of IGFs 1 and 2, IGFBP4, and the IGFBP4 protease (pregnancy-associated plasma protein A [PAPP-A]) mRNA expression in ovaries from late follicular phase rhesus monkeys using in situ hybridization. The IGF1 mRNA was not detected, but the IGF2 mRNA was abundant in theca interna and externa of all antral follicles and was present in the granulosa of large preovulatory and ovulatory follicles. The IGFBP4 mRNA was selectively expressed by LH receptor (LHR) mRNA-positive theca interna cells of healthy antral follicles (defined by aromatase and gonadotropin receptor expression) and by LHR-expressing granulosa cells found only in large preovulatory and ovulatory follicles (defined by size and aromatase expression). The PAPP-A mRNA was abundant in granulosa cells of most follicles without obvious relation to IGFBP4 expression. Ovarian IGFBP4 mRNA levels were markedly increased after treatment with the LH analog, hCG, whereas IGF2 and PAPP-A mRNAs were not significantly altered. In summary, IGFBP4 expression appears to be associated with follicular selection, not with atresia, in the monkey ovary. The IGFBP4 is consistently expressed in healthy theca interna and in luteinized granulosa cells, likely under LH regulation. The IGFBP4 protease, PAPP-A, is widely expressed without apparent selectivity for IGFBP4-expressing follicles or for dominant follicles. These observations suggest that IGFBP4 or an IGFBP4 proteolytic product may be involved with LH-induced steroidogenesis and/or luteinization rather than with inhibition of follicular growth.  相似文献   

16.
Ovaries were recovered from groups of naturally cyclic pigs (N = 5) on each of Days 16, 18, 20 and 21 of the oestrous cycle. Follicular diameter, follicular fluid volume and concentrations of oestradiol, testosterone and progesterone, and granulosa cell number were determined in all follicles greater than or equal to 2 mm in diameter (n = 511). In alternate follicles either granulosa cell aromatase activity and theca testosterone content or 125I-labelled hCG binding to granulosa and theca were determined. The mean total number of follicles recovered per animal decreased as the follicular phase progressed and a strong positive relationship (P less than 0.001) existed between follicular diameter and volume on all days. The number of granulosa cells recovered per follicle was variable, and not related to oestrogenic activity of the follicles. Mean follicular fluid oestradiol, testosterone and 125I-labelled hCG binding all increased until Day 20 and decreased on Day 21, whereas mean theca testosterone content, 125I-labelled hCG binding to theca tissue and aromatase were all maximal on Day 21. On Days 20 and 21 a subset of 14-16 large follicles was readily distinguishable from the remaining smaller, less oestrogenically active population in each animal. Yet, consistently within these subsets there was a difference in follicular diameter of approximately 2.0 mm and also a considerable range of biochemical development even among follicles of equal size. These results indicate asynchrony at the time of recruitment and selection among follicles destined to ovulate and suggest that heterogeneity continues into the immediate preovulatory period.  相似文献   

17.
To understand the mechanisms governing oocyte maturation better, the effects of the gonadotropin surge were studied on follicular cells of bovine preovulatory follicles. For this purpose, qualitative and quantitative changes in protein synthesis by both granulosa cells and cumulus cells were compared relative to the luteinizing hormone (LH) surge and the resumption of meiosis in the oocyte. Follicular cells were collected at different times before and up to 25 hr after the LH surge. For each individual preovulatory follicle, granulosa and cumulus cells were incubated separately for 3 hr with 3H-methionine or with 35S-methionine. Newly synthesized cytosolic proteins from granulosa and cumulus cells and proteins secreted into the medium were analyzed by polyacrylamide gel electrophoresis. The radioactivity was measured by liquid scintillation counting after slicing of the gels or revealed by fluorography. Three major peaks of the newly synthesized proteins, with molecular weights of 76, 56, and 30 kDa, were studied throughout the preovulatory period. After the LH surge, the overall level of protein synthesis increased in granulosa cells. In addition, the pattern of cytosolic proteins in granulosa cells changed, and, in particular, the relative synthesis of the 30 kDa peak decreased. These changes in cytosolic protein synthesis may be due to the action of LH since they could be reproduced in vitro in LH-stimulated granulosa cells. A predominant peak of 56 kDa was secreted by granulosa cells throughout the experimental period. No significant change was observed in proteins synthesized by cumulus cells under the same experimental conditions. The amounts of radioactivity incorporated into the three major proteins secreted by granulosa cells, however, were correlated significantly with the amounts of radioactivity incorporated by similar proteins synthesized by cumulus cells. These results indicate that cumulus cells respond differently from granulosa cells to the gonadotropin surge but not in an independent manner.  相似文献   

18.
19.
Follicular fluid from small- to medium-sized follicles has been shown to have an inhibiting effect on luteinization of granulosa cells in vitro. This study was conducted to investigate the effect of in vivo removal of follicular fluid on luteinization, peripheral gonadotropin concentrations, and ovulation of secondary follicles in the mare. Follicular fluid was aspirated from the preovulatory follicles of mares when the diameter of the follicle was 30-34 mm (Group A), 35-39 mm (Group B), or 40-44 mm (Group C). Mares in Group D served as controls and the preovulatory follicle was not aspirated. Mares in Group A had a significantly earlier rise in peripheral progesterone concentrations than did controls. There was no difference in duration of progesterone secretion or peak progesterone production between groups. LH and FSH values were significantly higher for mares in Groups A and B than for control mares. Mares in Group A tended to have a higher incidence of secondary ovulations than did mares in other groups. These data support the in vitro findings that follicular fluid from small- to medium-sized follicles may contain a luteinization inhibitor, and indicate that presence of follicular fluid during the final days of follicular maturation is not essential for development of a normal CL.  相似文献   

20.
To assess the roles of FSH and LH on follicular growth, after various experimental manipulations, hamster follicles were sorted into 10 stages and incubated for 4 h with [3H]thymidine. Stages 1-4 correspond to follicles with 1-4 layers of granulosa cells, respectively; Stage 5 = 5 or 6 layers of granulosa cells plus theca; Stage 6 = 7-8 layers of granulosa cells plus theca; Stage 7 = early formation of the antrum; Stages 8-10 = small, intermediate and large antral follicles, respectively. Phenobarbitone sodium injected at 13:00 h on pro-oestrus blocked the normal rise of blood FSH and LH concentrations at 15:00 h and prevented the increase of [3H]thymidine incorporation into follicles of Stages 1-9. The optimal treatment to reverse the effects of phenobarbitone was 1 microgram FSH and 2 micrograms LH injected i.p. at 13:00 h which restored DNA replication to follicles of Stages 2-10: FSH acted primarily on Stages 2-5 and LH on Stages 5-10. Injection of phenobarbitone at 13:00 h on prooestrus followed by 2.5 micrograms FSH at 22:00 h restored DNA synthesis by the next morning to follicles at Stages 1-8. In hamsters hypophysectomized at 09:00 h on the day of oestrus (Day 1), injection on Day 4 of 2.5 micrograms FSH restored DNA synthesis 6 h later to Stage 2-6 follicles. Unilateral ovariectomy on Day 3 resulted 6 h later in an acute rise in FSH and LH and change of follicles from Stage 4 to Stage 5 but, paradoxically, there was decreased synthesis of DNA in follicles of Stages 5-10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号