首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hantaviruses: molecular biology, evolution and pathogenesis   总被引:14,自引:0,他引:14  
Hantaviruses are tri-segmented negative sense single stranded RNA viruses that belong to the family Bunyaviridae. In nature, hantaviruses are exclusively maintained in the populations of their specific rodent hosts. In their natural host species, hantaviruses usually develop a persistent infection with prolonged virus shedding in excreta. Humans become infected by inhaling virus contaminated aerosol. Unlike asymptomatic infection in rodents, hantaviruses cause two acute febrile diseases in humans: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). The mortality rate varies from 0.1% to 40% depending on the virus involved. Hantaviruses are distributed world wide, with over 150,000 HFRS and HPS cases being registered annually. In this review we summarize current knowledge on hantavirus molecular biology, epidemiology, genetic diversity and co-evolution with rodent hosts. In addition, special attention was given in this review to describing clinical manifestation of HFRS and HPS, and advances in our current understanding of the host immune response, treatment, and prevention.  相似文献   

2.
3.
Hantaan virus is the prototypic member of the Hantavirus genus within the family Bunyaviridae and is a causative agent of the potentially fatal hemorrhagic fever with renal syndrome. The Bunyaviridae are a family of negative-sense RNA viruses with three-part segmented genomes. Virions are enveloped and decorated with spikes derived from a pair of glycoproteins (Gn and Gc). Here, we present cryo-electron tomography and single-particle cryo-electron microscopy studies of Hantaan virus virions. We have determined the structure of the tetrameric Gn-Gc spike complex to a resolution of 2.5 nm and show that spikes are ordered in lattices on the virion surface. Large cytoplasmic extensions associated with each Gn-Gc spike also form a lattice on the inner surface of the viral membrane. Rod-shaped ribonucleoprotein complexes are arranged into nearly parallel pairs and triplets within virions. Our results differ from the T=12 icosahedral organization found for some bunyaviruses. However, a comparison of our results with the previous tomographic studies of the nonpathogenic Tula hantavirus indicates a common structural organization for hantaviruses.  相似文献   

4.
The emerging viral diseases haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) are a cause of global concern as they are increasingly reported from newer regions of the world. The hantavirus species causing HFRS include Hantaan virus, Seoul virus, Puumala virus, and Dobrava-Belgrade virus while Sin Nombre virus was responsible for the 1993 outbreak of HCPS in the Four Corners Region of the US. Humans are accidental hosts and get infected by aerosols generated from contaminated urine, feces and saliva of infected rodents. Rodents are the natural hosts of these viruses and develop persistent infection. Human to human infections are rare and the evolution of the virus depends largely on that of the rodent host. The first hantavirus isolate to be cultured, Thottapalayam virus, is the only indigenous isolate from India, isolated from an insectivore in 1964 in Vellore, South India. Research on hantaviruses in India has been slow but steady since 2005. Serological investigation of patients with pyrexic illness revealed presence of anti-hantavirus IgM antibodies in 14.7% of them. The seropositivity of hantavirus infections in the general population is about 4% and people who live and work in close proximity with rodents have a greater risk of acquiring hantavirus infections. Molecular and serological evidence of hantavirus infections in rodents and man has also been documented in this country. The present review on hantaviruses is to increase awareness of these emerging pathogens and the threats they pose to the public health system.  相似文献   

5.
Analyses of the virion polypeptides and genomes of several Phlebotomus fever group viruses, Karimabad, Punta Toro, Chagres, and the sandfly fever Sicilian serotype viruses, have established that they are biochemically similar to the accepted members of the Bunyaviridae family. Like snowshoe hare virus (a member of the California serogroup of the Bunyavirus genus of the Bunyaviridae family), Karimabad, Punta Toro, Chagres, and the sandfly fever Sicilian serotype viruses all have three viral RNA species, designated large (L), medium (M), and small (S). Oligonucleotide fingerprint analyses of Karimabad and Punta Toro virus RNA species indicated that their L, M, and S RNA species are unique. By polyacrylamide gel electrophoresis it was determined for Karimabad virus that the apparent molecular weights of its L, M, and S RNA species are 2.6 X 10(6), 2.2 X 10(6), and 0.8 X 10(6), respectively. For Punta Toro virus, the apparent molecular weights of its L, M, and S RNA species are 2.8 X 10(6), 1.8 X 10(6), and 0.75 X 10(6), respectively. The major internal nucleocapsid (N) protein of Karimabad virus was found to have a molecular weight of 21 X 10(3). A similar polypeptide size class was identified in preparations of sandfly fever Sicilian serotype, Chagres, and Punta Toro viruses. The Karimabad virus glycoproteins formed the external surface projections on virus particles and could be removed from virus preparations by protease treatment. The glycoproteins in an unreduced sample could be resolved into two size classes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. They had apparent molecular weights of 62 X 10(3) and 50 X 10(3) in continuous polyacrylamide gels. When Karimabad virus preparations were reduced with 1% beta-mercaptoethanol, prior to resolution by continuous polyacrylamide gel electrophoresis, all the viral glycoprotein was recovered in a single size class, having an apparent molecular weight of 62 X 10(3). Two or three major virion polypeptides have been identified in preparations of Punta Toro, Chagres, and sandfly fever Sicilian serotype viruses.  相似文献   

6.
In this review modern data on dangerous and particularly dangerous viral haemorrhagic fevers caused by a group of viruses belonging to the families of phylo-, arena-, flavi-, bunya- and togaviruses are presented. Morbidity rates and epidemics caused by Marburg virus, Ebola fever virus, Lassa fever virus, Argentinian and Bolivian haemorrhagic fever viruses, dengue haemorrhagic fever virus, Crimean haemorrhagic fever virus, Hantaviruses are analyzed. Mechanisms of the evolution of the epidemic manifestation of these infections are considered. The importance of the development of tools and methods of diagnosis, rapid prevention and treatment of exotic haemorrhagic fevers is emphasized.  相似文献   

7.
Tryptic peptide analyses have been undertaken on the nucleocapsid (N) protein of snowshoe hare (SSH) and La Crosse (LAC) bunyaviruses. Similar analyses have been performed on the N proteins of two recombinant viruses which have the large/medium/small RNA genome configurations: SSH/LAC/LAC and SSH/LAC/SSH. The results provide conclusive evidence that the S RNA of bunyaviruses codes for the the viral N protein.  相似文献   

8.
Wild-type recombinants were obtained at high frequency from coinfections of BHK cells involving temperature-sensitive, conditional-lethal mutants of snowshoe hare (SSH) and La Crosse (LAC) bunyaviruses. Analyses of two of the recombinants indicated that they have the genome compositions SSH/LAC/SSH and SSH/LAC/LAC for their respective L, M, and S virion RNA species. This evidence, together with that for the genetic stability of the recombinants, indicates that they were derived by segment reassortment of the competent genome pieces of the parental viruses. The SSH/LAC/SSH recombinant appears, from polypeptide analysis, to have the SSH type of nucleocapsid protein (N), whereas the SSH/LAC/LAC recombinant has the LAC nucleocapsid protein, suggesting that the viral S RNA codes for the N protein.  相似文献   

9.
In the last 30 years, several emerging infections due to novel viruses have been identified, from haemorrhagic fever viruses to HIV, from the SARS-Coronavirus to Avian influenza viruses. Ecological and genetic changes are important determinants of the emergence of new viral infections, driving to an increase of R0 (the basic reproductive number) through increasing the probability of transmission. The current H5N1 epidemic may be considered a prepandemic paradigm that needs thorough investigation.  相似文献   

10.
Hantavirus infections and their prevention.   总被引:4,自引:0,他引:4  
Hantaviruses are rodent-borne bunyaviruses which cause haemorrhagic fever with renal syndrome and Hantavirus pulmonary syndrome in humans. This review covers the host interactions of the viruses, including the rodent reservoirs, the clinical outcome of human infections as well as the pathogenesis and laboratory diagnosis of infections. The current stage in prophylaxis and therapy of hantaviral diseases is described and different approaches in vaccine development are discussed.  相似文献   

11.
Eukaryotic RNA viruses are known to utilize host factors; however, the identity of these factors and their role in the virus life cycle remain largely undefined. Here, we report a method to identify proteins bound to the viral RNA during amplification in cell culture: thiouracil cross-linking mass spectrometry (TUX-MS). TUX-MS relies on incorporation of a zero-distance cross-linker into the viral RNA during infection. Proteins bound to viral RNA are cross-linked prior to cell lysis, purified, and identified using mass spectrometry. Using the TUX-MS method, an unbiased screen for poliovirus (PV) host factors was conducted. All host and viral proteins that are known to interact with the poliovirus RNA were identified. In addition, TUX-MS identified an additional 66 host proteins that have not been previously described in poliovirus amplification. From these candidates, eight were selected and validated. Furthermore, we demonstrate that small interfering RNA (siRNA)-mediated knockdown of two of these uncharacterized host factors results in either a decrease in copy number of positive-stranded RNA or a decrease in PV translation. These data demonstrate that TUX-MS is a robust, unbiased method to identify previously unknown host cell factors that influence virus growth. This method is broadly applicable to a range of RNA viruses, such as flaviviruses, alphaviruses, picornaviruses, bunyaviruses, and coronaviruses.  相似文献   

12.
The Old World hantaviruses, members of the family Bunyaviridae, cause hemorrhagic fever with renal syndrome (HFRS). Transmission to humans occurs via inhalation of aerosols contaminated with the excreta of infected rodents. The viral antigen is detectable in dendritic cells, macrophages, lymphocytes, and, most importantly, microvascular endothelial cells. However, the site and detailed mechanism of entry of HFRS-causing hantaviruses in polarized epithelial cells have not yet been defined. Therefore, this study focused on the entry of the pathogenic hantaviruses Hantaan and Puumala into African green monkey kidney epithelial cells and primary human endothelial cells. The polarized epithelial and endothelial cells were found to be susceptible to hantavirus infection exclusively from the apical surface. Treatment with phosphatidylinositol-specific phospholipase C, which removes glycosylphosphatidylinositol (GPI)-anchored proteins from the cell surface, protects cells from infection, indicating that hantaviruses require a GPI-anchored protein as a cofactor for entry. Decay-accelerating factor (DAF)/CD55 is a GPI-anchored protein of the complement regulatory system and serves as a receptor for attachment to the apical cell surface for a number of viruses. Infection was reduced by the pretreatment of hantaviral particles with human recombinant DAF. Moreover, the treatment of permissive cells with DAF-specific antibody blocked infection. These results demonstrate that the Old World hantaviruses Hantaan and Puumala enter polarized target cells from the apical site and that DAF is a critical cofactor for infection.  相似文献   

13.
RNA viruses are characterized by high genetic variability resulting in rapid adaptation to new or resistant hosts. Research for plant RNA virus genetic structure and its variability has been relatively scarce compared to abundant research done for human and animal RNA viruses. Here, we utilized a molecular population genetic framework to characterize the evolution of a highly pathogenic plant RNA virus [Tomato spotted wilt virus (TSWV), Tospovirus, Bunyaviridae]. Data from genes encoding five viral proteins were used for phylogenetic analysis, and for estimation of population parameters, subpopulation differentiation, recombination, divergence between Tospovirus species, and selective constraints on the TSWV genome. Our analysis has defined the geographical structure of TSWV, attributed possibly to founder effects. Also, we identify positive selection favouring divergence between Tospovirus species. At the species level, purifying selection has acted to preserve protein function, although certain amino acids appear to be under positive selection. This analysis provides demonstration of population structuring and species-wide population expansions in a multisegmented plant RNA virus, using sequence-based molecular population genetic analyses. It also identifies specific amino acid sites subject to selection within Bunyaviridae and estimates the level of genetic heterogeneity of a highly pathogenic plant RNA virus. The study of the variability of TSWV populations lays the foundation in the development of strategies for the control of other viral diseases in floral crops.  相似文献   

14.
Hantaviruses are rodent-borne Bunyaviruses that infect the Arvicolinae, Murinae, and Sigmodontinae subfamilies of Muridae. The rate of molecular evolution in the hantaviruses has been previously estimated at approximately 10(-7) nucleotide substitutions per site, per year (substitutions/site/year), based on the assumption of codivergence and hence shared divergence times with their rodent hosts. If substantiated, this would make the hantaviruses among the slowest evolving of all RNA viruses. However, as hantaviruses replicate with an RNA-dependent RNA polymerase, with error rates in the region of one mutation per genome replication, this low rate of nucleotide substitution is anomalous. Here, we use a Bayesian coalescent approach to estimate the rate of nucleotide substitution from serially sampled gene sequence data for hantaviruses known to infect each of the 3 rodent subfamilies: Araraquara virus (Sigmodontinae), Dobrava virus (Murinae), Puumala virus (Arvicolinae), and Tula virus (Arvicolinae). Our results reveal that hantaviruses exhibit short-term substitution rates of 10(-2) to 10(-4) substitutions/site/year and so are within the range exhibited by other RNA viruses. The disparity between this substitution rate and that estimated assuming rodent-hantavirus codivergence suggests that the codivergence hypothesis may need to be reevaluated.  相似文献   

15.
Several factors play a role during the replication and transmission of RNA viruses. First, as a consequence of their enormous mutation rate, complex mixtures of genomes are generated immediately after infection of a new host. Secondly, differences in growth and competition rates drive the selection of certain genetic variants within an infected host. Thirdly, but not less important, a random sampling occurs at the moment of viral infectious passage from an infected to a healthy host. In addition, the availability of hosts also influences the fate of a given viral genotype. When new hosts are scarce, different viral genotypes might infect the same host, adding an extra complexity to the competition among genetic variants. We have employed a two‐fold approach to analyse the role played by each of these factors in the evolution of RNA viruses. First, we have derived a model that takes into account all the preceding factors. This model employs the classic Lotka‐Volterra competition equations but it also incorporates the effect of mutation during RNA replication, the effect of the stochastic sampling at the moment of infectious passage among hosts and, the effect of the type of infection (single, coinfection or superinfection). Secondly, the predictions of the model have been tested in an in vitro evolution experiment. Both theoretical and experimental results show that in infection passages with coinfection viral fitness increased more than in single infections. In contrast, infection passages with superinfection did not differ from the single infection. The coinfection frequency also affected the outcome: the larger the proportion of viruses coinfecting a host, the larger increase in fitness observed.  相似文献   

16.
RNA recombination in animal and plant viruses.   总被引:55,自引:1,他引:54       下载免费PDF全文
An increasing number of animal and plant viruses have been shown to undergo RNA-RNA recombination, which is defined as the exchange of genetic information between nonsegmented RNAs. Only some of these viruses have been shown to undergo recombination in experimental infection of tissue culture, animals, and plants. However, a survey of viral RNA structure and sequences suggests that many RNA viruses were derived form homologous or nonhomologous recombination between viruses or between viruses and cellular genes during natural viral evolution. The high frequency and widespread nature of RNA recombination indicate that this phenomenon plays a more significant role in the biology of RNA viruses than was previously recognized. Three types of RNA recombination are defined: homologous recombination; aberrant homologous recombination, which results in sequence duplication, insertion, or deletion during recombination; and nonhomologous (illegitimate) recombination, which does not involve sequence homology. RNA recombination has been shown to occur by a copy choice mechanism in some viruses. A model for this recombination mechanism is presented.  相似文献   

17.
One of the most unusual features of RNA viruses is their enormous genetic variability. Among the different processes contributing to the continuous generation of new viral variants RNA recombination is of special importance. This process has been observed for human, animal, plant and bacterial viruses. The collected data reveal a great susceptibility of RNA viruses to recombination. They also indicate that genetic RNA recombination (especially the nonhomologous one) is a major factor responsible for the emergence of new viral strains or species. Although the formation and accumulation of viral recombinants was observed in numerous RNA viruses, the molecular basis of this phenomenon was studied in only a few viral species. Among them, brome mosaic virus (BMV), a model (+)RNA virus offers the best opportunities to investigate various aspects of genetic RNA recombination in vivo. Unlike any other, the BMV-based system enables homologous and nonhomologous recombination studies at both the protein and RNA levels. As a consequence, BMV is the virus for which the structural requirements for genetic RNA recombination have been most precisely established. Nevertheless, the previously proposed model of genetic recombination in BMV still had one weakness: it could not really explain the role of RNA structure in nonhomologous recombination. Recent discoveries concerning the latter problem give us a chance to fill this gap. That is why in this review we present and thoroughly discuss all results concerning nonhomologous recombination in BMV that have been obtained until now.  相似文献   

18.
Antiviral immunity directed by small RNAs   总被引:27,自引:0,他引:27  
Ding SW  Voinnet O 《Cell》2007,130(3):413-426
Plants and invertebrates can protect themselves from viral infection through RNA silencing. This antiviral immunity involves production of virus-derived small interfering RNAs (viRNAs) and results in specific silencing of viruses by viRNA-guided effector complexes. The proteins required for viRNA production as well as several key downstream components of the antiviral immunity pathway have been identified in plants, flies, and worms. Meanwhile, viral mechanisms to suppress this small RNA-directed immunity by viruses are being elucidated, thereby illuminating an ongoing molecular arms race that likely impacts the evolution of both viral and host genomes.  相似文献   

19.
Summary Three lines of observation demonstrate the role of arthropods in transmission and evolution of viruses. a) Recent outbreaks of viruses from their niches took place and insects have played a major role in propagating the viruses. b) Examination of the list of viral families and their hosts shows that many infect invertebrates (I) and vertebrates (V) or (I) and plants (P) or all kingdoms (VIPs). This notion holds true irrespective of the genome type. At first glance the argument seems to be weak in the case of enveloped and non-enveloped RNA viruses with single-stranded (ss) segmented or non-segmented genomes of positive (+) or negative polarity. Here, there are several families infecting V or P only; no systematic relation to arthropods is found. c) In the non-enveloped plant viruses with ss RNA genomes there is a strong tendency for segmentation and individual packaging of the genome pieces. This is in contrast to ss+ RNA animal viruses and can only be explained by massive transmission by seed or insects or both, because individual packaging necessitates a multihit infection. Comparisons demonstrate relationships in the nonstructural proteins of double-stranded and ss+ RNA viruses irrespective of host range, segmentation, and envelope. Similar conclusions apply for the negative-stranded RNA viruses. Thus, viral supergroups can be created that infect V or P and exploit arthropods for infection or transmission or both. Examples of such relationships and explanations for viral evolution are reviewed and the arthropod orders important for cell culture are given.  相似文献   

20.
Ho CK  Gong C  Shuman S 《Journal of virology》2001,75(4):1744-1750
Paramecium bursaria chlorella virus 1 (PBCV-1) elicits a lytic infection of its unicellular green alga host. The 330-kbp viral genome has been sequenced, yet little is known about how viral mRNAs are synthesized and processed. PBCV-1 encodes its own mRNA guanylyltransferase, which catalyzes the addition of GMP to the 5' diphosphate end of RNA to form a GpppN cap structure. Here we report that PBCV-1 encodes a separate RNA triphosphatase (RTP) that catalyzes the initial step in cap synthesis: hydrolysis of the gamma-phosphate of triphosphate-terminated RNA to generate an RNA diphosphate end. We exploit a yeast-based genetic system to show that Chlorella virus RTP can function as a cap-forming enzyme in vivo. The 193-amino-acid Chlorella virus RTP is the smallest member of a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi and other large eukaryotic DNA viruses (poxviruses, African swine fever virus, and baculoviruses). Chlorella virus RTP is more similar in structure to the yeast RNA triphosphatases than to the enzymes of metazoan DNA viruses. Indeed, PBCV-1 is unique among DNA viruses in that the triphosphatase and guanylyltransferase steps of cap formation are catalyzed by separate viral enzymes instead of a single viral polypeptide with multiple catalytic domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号