首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake of L-2,4-diaminobutyric acid (DABA), a positively charged analogue of gamma-aminobutyric acid (GABA), by a synaptosomal fraction isolated from rat brain occurred with a Km of 54 +/- 12 microM and a Vmax of 1.3 +/- 0.2 nmol/min/mg protein. The transport of DABA was inhibited competitively by GABA whereas that of GABA was affected in the same manner by addition of DABA. The maximal accumulation of DABA ([DABA]i/[DABA]c) was observed to increase as the second power of the transmembrane electrical potential ([K+]i/[K+]e) and the first power of the sodium ion concentration gradient. These findings indicate that DABA is transported on the GABA carrier with a net charge of +2, where one charge is provided by the cotransported Na+ and the second is contributed by the amino acid itself. Since uptake of GABA, an electroneutral molecule, is accompanied by transfer of two sodium ions, the results obtained with DABA suggest that one of the sodium binding sites on the GABA transporter is in proximity to the amino acid binding site.  相似文献   

2.
Microelectrode measurements of apical membrane potentials (Va) in absorptive cells of isolated Necturus intestine showed that, in the presence or absence of external Na+, 10 mM lysine added to the mucosal medium caused rapid depolarization followed by slower repolarization of Va. In Na+-free media the effects of 10 mM lysine on Va were abolished by 10 mM leucine which alone had no effect on Va under these conditions. This indicates that uncoupled electrodiffusion of lysine plays little or no role in lysine entry across the brush-border membrane. When external Na+ was greater than 10 mM the maximum depolarization of Va (delta Va') induced by [Lys] ranging from 5 to 30 mM was a simple saturable function of [Lys]. In Na+-free media, the relationship between delta Va' and [Lys] was biphasic. At first, delta Va' increased with increasing [Lys] reaching a maximum at 10 mM lysine. When [Lys] was further increased, delta Va' declined progressively to reach zero or near zero values. A single transport pathway model is proposed to account for rheogenic lysine entry across the brush-border membrane in the presence and absence of Na+. This postulates an amino acid transporter in the membrane with two binding sites. One is an amino acid site specific for the alpha-amino-alpha-carboxyl group. The other is a Na+ site. Neutral amino acids (e.g. leucine) compete with lysine for the amino acid site. The Na+ site has some affinity for the epsilon-amino group of lysine. When external Na+ is high the Na+ site is essentially 'saturated' with Na+ and formation of a mobile complex between an amino acid and the transporter depends in a saturable fashion on amino acid concentration. In Na+-free media or in media containing low [Na+]; at low external [Lys] the epsilon-amino group of a lysine molecule (simultaneously attached to the amino acid site) interacts with the Na+ site to form a mobile complex, as external [Lys] is increased, attachment of different lysine molecules to each site of an increasing number of transporters to form nontransported or poorly transported complexes results in substrate inhibition of the rheogenic lysine transport process.  相似文献   

3.
Amino acid transport was studied in membranes of the peptidolytic, thermophilic, anaerobic bacterium Clostridium fervidus. Uptake of the negatively charged amino acid L-glutamate, the neutral amino acid L-serine, and the positively charged amino acid L-arginine was examined in membrane vesicles fused with cytochrome c-containing liposomes. Artificial ion diffusion gradients were also applied to establish the specific driving forces for the individual amino acid transport systems. Each amino acid was driven by the delta psi and delta mu Na+/F and not by the Z delta pH. The Na+ stoichiometry was estimated from the amino acid-dependent 22Na+ efflux and Na(+)-dependent 3H-amino acid efflux. Serine and arginine were symported with 1 Na+ and glutamate with 2 Na+. C. fervidus membranes contain Na+/Na+ exchange activity, but Na+/H+ exchange activity could not be demonstrated.  相似文献   

4.
Two distinct proton binding sites in the ATP synthase family   总被引:1,自引:0,他引:1  
von Ballmoos C  Dimroth P 《Biochemistry》2007,46(42):11800-11809
The F1F0 ATP synthase utilizes energy stored in an electrochemical gradient of protons (or Na+ ions) across the membrane to synthesize ATP from ADP and phosphate. Current models predict that the protonation/deprotonation of specific acidic c ring residues is at the core of the proton translocation mechanism by this enzyme. To probe the mode of proton binding, we measured the covalent modification of the acidic c ring residues with the inhibitor dicyclohexylcarbodiimide (DCCD) over the pH range from 5 to 11. With the H+-translocating ATP synthase from the archaeum Halobacterium salinarium or the Na+-translocating ATP synthase from Ilyobacter tartaricus, the pH profile of DCCD labeling followed a titration curve with a pKa around neutral, reflecting protonation of the acidic c ring residues. However, with the ATP synthases from Escherichia coli, mitochondria, or chloroplasts, a clearly different, bell-shaped pH profile for DCCD labeling was observed which is not compatible with carboxylate protonation but might be explained by the coordination of a hydronium ion as proposed earlier [Boyer, P. D. (1988) Trends Biochem. Sci. 13, 5-7]. Upon site-directed mutagenesis of single binding site residues of the structurally resolved c ring, the sigmoidal pH profile for DCCD labeling could be converted to a more bell-shaped one, demonstrating that the different ion binding modes are based on subtle changes in the amino acid sequence of the protein. The concept of two different binding sites in the ATP synthase family is supported by the ATP hydrolysis pH profiles of the investigated enzymes.  相似文献   

5.
Mechanism of amino Acid uptake by sugarcane suspension cells   总被引:13,自引:5,他引:8       下载免费PDF全文
Wyse RE  Komor E 《Plant physiology》1984,76(4):865-870
The amino acid carriers in sugarcane suspension cells were characterized for amino acid specificity and the stoichiometry of proton and potassium flux during amino acid transport.

Amino acid transport by sugarcane cells is dependent upon three distinct transport systems. One system is specific for neutral amino acids and transports all neutral amino acids including glutamine, asparagine, and histidine. The uptake of neutral amino acids is coupled to the uptake of one proton per amino acid; one potassium ion leaves the cells for charge compensation. Histidine is only taken up in the neutral form so that deprotonation of the charged imidazole nitrogen has to occur prior to uptake. The basic amino acids are transported by another system as uniport with charge-compensating efflux of protons and potassium. The acidic amino acids are transported by a third system. Acidic amino acids bind to the transport site only if the distal carboxyl group is in the dissociated form (i.e. if the acidic amino acid is anionic). Two protons are withdrawn from the medium and one potassium leaves the cell for charge compensation during the uptake of acid amino acids. Common to all three uptake systems is a monovalent positively charged amino acidproton carrier complex at the transport site.

  相似文献   

6.
Effectors of amino acid transport processes in animal cell membranes   总被引:1,自引:0,他引:1  
Various effectors, which act upon ion gradients, protein synthesis, membrane components or cellular functional groups, have been employed to provide insights into the nature of amino acid-membrane transport processes in animal cells. Such effectors, for example, include ions, hormones, metabolites and various organic reagents and their judicious use has allowed the following list of conclusions. Sodium ion has been found to stimulate amino acid transport in a wide variety of cell systems, although depending on the tissue and/or substrate, this ion may have no effect on such transport, or even inhibit it. Amino acid transport can be stimulated in some cell systems by other ions such as K+, Li+, H+ or Cl-. Both H+ and K+ have been found to be inhibitory in other systems. Amino acid transport is dependent in many cell systems upon an inwardly directed Na+ gradient and is stimulated by a membrane potential (negative cell interior). In some cell systems an inwardly directed Cl- and H+ gradient or an outwardly directed K+ gradient can energize transport. Structurally dissimilar effectors such as ouabain, Clostridium enterotoxin, aspirin and amiloride inhibit amino acid transport presumably through dissipation of the Na+ gradient. Inhibition by certain sugars or metabolic intermediates of the tricarboxylic acid cycle may compete with the substrate for the energy of the Na+ gradient or interact with the substrate at the carrier level either allosterically or at a common site. Stimulation of transport by other sugars or intermediates may result from their catabolism to furnish energy for transport. Insulin and glucagon stimulate transport of amino acids in a variety of cell systems by a mechanism which involves protein synthesis. Microtubules may be involved in the regulation of transport by insulin or glucagon. Some reports also suggest that insulin has a direct effect on membranes. In addition, a number of growth hormones and factors have stimulatory effects on amino acid transport which are also mediated by protein synthesis. Steroid hormones have been noted to enhance or diminish transport of amino acids depending on the nature of the hormone. These agents appear to function at the level of protein synthesis. While stimulation may involve increased carrier synthesis, inhibition probably involves synthesis of a labile protein which either decreases the rate of synthesis or increases the rate of degradation of a component of the transport system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Musgaard M  Thøgersen L  Schiøtt B 《Biochemistry》2011,50(51):11109-11120
The P-type ATPases are responsible for the transport of cations across cell membranes. The sarco(endo)plasmic reticulum Ca2?-ATPase (SERCA) transports two Ca2? ions from the cytoplasm to the lumen of the sarco(endo)plasmic reticulum and countertransports two or three protons per catalytic cycle. Two binding sites for Ca2? ions have been located via protein crystallography, including four acidic amino acid residues that are essential to the ion coordination. In this study, we present molecular dynamics (MD) simulations examining the protonation states of these amino acid residues in a Ca2?-free conformation of SERCA. Such knowledge will be important for an improved understanding of atomistic details of the transport mechanism of protons and Ca2? ions. Eight combinations of the protonation of four central acidic residues, Glu309, Glu771, Asp800, and Glu908, are tested from 10 ns MD simulations with respect to protein stability and ability to maintain a structure similar to the crystal structure. The trajectories for the most prospective combinations of protonation states were elongated to 50 ns and subjected to more detailed analysis, including prediction of pK(a) values of the four acidic residues over the trajectories. From the simulations we find that the combination leaving only Asp800 as charged is most likely. The results are compared to available experimental data and explain the observed destabilization upon full deprotonation, resulting in the entry of cytoplasmic K? ions into the Ca2? binding sites during the simulation in which Ca2? ions are absent. Furthermore, a hypothesis for the exchange of protons from the central binding cavity is proposed.  相似文献   

8.
Previous work with L-[3H]glutamate transport by lobster (Homarus americanus) hepatopancreatic brush border membrane vesicles (BBMV) indicated that the transport of this amino acid was stimulated by the presence of both Na+ and Cl- ions in the external medium, however, the specific catalytic or energetic role of each monovalent ion in amino acid transfer was not established (Ahearn and Clay (1987) J. Exp. Biol. 130, 175-191). The present study employs a variety of experimental treatments with this membrane preparation to clarify the nature of the ion dependency in the cotransport process. A zero-trans time course experiment using inwardly-directed transmembrane Na+ or Cl- gradients led to similar transient accumulations of the amino acid above equilibrium values in the presence of equilibrated concentrations of the respective counterions. The uptake overshoots observed in the presence of single ion gradients were significantly increased when gradients of both Na+ and Cl- were used simultaneously. When vesicles were pre-equilibrated with L-[3H]glutamate and either of the monovalent ions, an inwardly-directed gradient of each counterion led to the transient accumulation of additional labelled amino acid above its equilibrium concentration, indicating that either ion gradient was capable of energizing the net flow of L-glutamate. A cotransport stoichiometry of 1 Na+/1 Cl-/1 L-glutamate was established using the Static Head analysis where a balance of ion and amino acid driving forces were attained with a 7:1 Na+ or Cl- gradient (o greater than i) against a 7:1 L-glutamate gradient (i greater than o).  相似文献   

9.
Two membrane fractions prepared from the Ehrlich ascites-tumor cell show non-identical stimulatory responses to certain amino acids in their Mg+2 -dependent activity to cleave ATP, despite the presence of ouabain and the absence of Na+ or K+. The first of these, previously described, shows little (Na+ + K+)-ATPase activity, and is characteristicallly stimulated by the presence of certain diamino acids with low pK2, and at pH values suggesting that the cationic forms of these amino acids are effective. The evidence indicates that these effects are not obtained through occupation of the kinetically discernible receptor site serving characteristically for the uphill transport of these amino acids into the Ehrlich cell. The second membrane preparation was purified with the goal of concentrating the (Na+ +K+)-ATPase activity. It also is stimulated by the model diamino acid, 4-amino-1-methylpiperidine-4-carboxylic acid, and several ordinary amino acids. The diamino acids were most effective at pH values where the neutral zwitterionic forms might be responsible. Among the optically active amino acids tested, the effects of ornithine and leucine were substantially stronger for the L than for the D isomers. The list of stimulatory amino acids again corresponds poorly to any single transport system, although the possibility was not excluded that stimulation might occur for both preparations by occupation of a membrane site which ordinarily is kinetically silent in the transport sequence. The high sensitivity to deoxycholate and to dicyclohexylcarbodiimide of the hydrolytic activity produced by the presence of L-ornithine and 4-amino-1-methyl-piperidine-4-carboxylic acid suggests that the stimulatory effect is not merely a general intensification of the background Mg+ -dependent hydrolytic activity.  相似文献   

10.
The Na+/L-glutamate (L-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl-. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl- could specifically activate the Na+-dependent L-glutamate (L-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl- was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. L-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl- did not show any translocation of net charge.  相似文献   

11.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

12.
Glutamate transport by the neuronal excitatory amino acid carrier (EAAC1) is accompanied by the coupled movement of one proton across the membrane. We have demonstrated previously that the cotransported proton binds to the carrier in the absence of glutamate and, thus, modulates the EAAC1 affinity for glutamate. Here, we used site-directed mutagenesis together with a rapid kinetic technique that allows one to generate sub-millisecond glutamate concentration jumps to locate possible binding sites of the glutamate transporter for the cotransported proton. One candidate for this binding site, the highly conserved glutamic acid residue Glu-373 of EAAC1, was mutated to glutamine. Our results demonstrate that the mutant transporter does not catalyze net transport of glutamate, whereas Na(+)/glutamate homoexchange is unimpaired. Furthermore, the voltage dependence of the rates of Na(+) binding and glutamate translocation are unchanged compared with the wild-type. In contrast to the wild-type, however, homoexchange of the E373Q transporter is completely pH-independent. In line with these findings the transport kinetics of the mutant EAAC1 show no deuterium isotope effect. Thus, we suggest a new transport mechanism, in which Glu-373 forms part of the binding site of EAAC1 for the cotransported proton. In this model, protonation of Glu-373 is required for Na(+)/glutamate translocation, whereas the relocation of the carrier is only possible when Glu-373 is negatively charged. Interestingly, the Glu-373-homologous amino acid residue is glutamine in the related neutral amino acid transporter alanine-serine-cysteine transporter. The function of alanine-serine-cysteine transporter is neither potassium- nor proton-dependent. Consequently, our results emphasize the general importance of glutamate and aspartate residues for proton transport across membranes.  相似文献   

13.
Na+-stimulated amino acid transport was investigated in MDCK kidney epithelial cell monolayers and in isolated membrane vesicles. When transport polarity was assessed in confluent polarized epithelial cell monolayers cultured on Nucleopore filters and mounted between two lucite chambers, Na+-stimulated transport of 2-(methylamino)isobutyric acid (MeAIB), a substrate specific for the A system, was predominantly localized on the basolateral membrane. Na+-stimulated amino acid transport activity was maximal in subconfluent cultures, and was substantially reduced after confluence. A membrane vesicle preparation was isolated from confluent MDCK cell cultures which was enriched in Na+-stimulated MeAIB transport activity and Na+,K+,ATPase activity, a basolateral marker, but was not enriched in apical marker enzyme activities or significantly contaminated by mitochondria. Na+-coupled amino acid transport activity assayed in vesicles exhibited a marked dependence on external pH, with an optimum at pH 7.4. The pattern of competitive interactions among neutral amino acids was characteristic of A system transport. Na+-coupled MeAIB and AIB transport in vesicles was electrogenic, stimulated by creation of an interior-negative membrane potential. The Na+ dependence of amino acid transport in vesicles suggested a Na+ symport mechanism with a 1:1 stoichiometry between Na+ and amino acid.  相似文献   

14.
1. Models are presented for (a) HK ATPase acting in the presence of K and Cl conductances; (b) a pH regulatory system where Na/H exchange is regulated directly by second messenger and the anion exchanger is activated secondarily to the rise in cell pH; (c) vesicle fusion and K and Cl conductances activation in the gastric parietal cell. 2. It is suggested that H transport involves protonation and deprotonation of histidine groups as well as the motion of these groups relative to the membrane barrier. 3. The HK ATPase would have a voltage generating and voltage sensitive step in the forward direction. 4. Given net electroneutrality the K transport reaction would also be charge translocating and voltage sensitive.  相似文献   

15.
In principle, an ion channel needs no more than a single gate, but a pump requires at least two gates that open and close alternately to allow ion access from only one side of the membrane at a time. In the Na+,K+-ATPase pump, this alternating gating effects outward transport of three Na+ ions and inward transport of two K+ ions, for each ATP hydrolysed, up to a hundred times per second, generating a measurable current if assayed in millions of pumps. Under these assay conditions, voltage jumps elicit brief charge movements, consistent with displacement of ions along the ion pathway while one gate is open but the other closed. Binding of the marine toxin, palytoxin, to the Na+,K+-ATPase uncouples the two gates, so that although each gate still responds to its physiological ligand they are no longer constrained to open and close alternately, and the Na+,K+-ATPase is transformed into a gated cation channel. Millions of Na+ or K+ ions per second flow through such an open pump-channel, permitting assay of single molecules and allowing unprecedented access to the ion transport pathway through the Na+,K+-ATPase. Use of variously charged small hydrophilic thiol-specific reagents to probe cysteine targets introduced throughout the pump's transmembrane segments allows mapping and characterization of the route traversed by transported ions.  相似文献   

16.
The active transport of neutral amino acids into Streptomyces hydrogenans is inhibited by external Na+. There is no indication that in these cells amino acid accumulation is driven by an inward gradient of Na+. The extent of transport inhibition by Na+ depends on the nature of the amino acid. It decreases with increasing chain length of the amino acid molecules i.e. with increasing non-polar properties of the side chain. Kinetic studies show that Na+ competes with the amino acid for a binding site at the amino acid carrier. There is a close relation between the Ki values for Na+ and the number of C atoms of the amino acids. Other cations also inhibit neutral amino acid uptake competitively; the effectiveness decreases in the order Li+ greater than Na+ greater than K+ greater than Rb+ greater than Cs+. Anions do not have a significant effect on the uptake of neutral amino acids. After prolonged incubation of the cells with 150 mM Na+, in addition to the competitive inhibition of transport Na+ induces an increase in membrane permeability for amino acids.  相似文献   

17.
The phosphatidylcholine exchange protein from bovine liver catalyzes the transfer of phosphatidylcholine between rat liver mitochondria and sonicated liposomes. The effect of changes in the liposomal lipid composition and ionic composition of the medium on the transfer have been determined. In addition, it has been determined how these changes affected the electrophoretic mobility i.e. the surface charge of the membrane particles involved. Transfer was inhibited by the incorporation of negatively charged phosphatidic acid, phosphatidylserine, phosphatidylglycerol and phosphatidylinositol into the phosphatidylcholine-containing vesicles; zwitterionic phosphatidyl-ethanolamine had much less of an inhibitory effect while positively charged stearylamine stimulated. The cation Mg2+ and, to a lesser extent, K+ overcame the inhibitory effect exerted by phosphatidic acid, in that concentration range where these ions neutralized the negative surface charge most effectively. Under conditions where Mg2+ and K+ affected the membrane surface charge relatively little inhibition was observed. In measuring the protein-mediated transfer between a monolayer and vesicles consisting of only phosphatidylcholine, cations inhibited the transfer in the order La3+ greater than Mg2+ larger than or equal to Ca2+ greater than K+ = Na+. Inhibition was not related to the ionic strength, and very likely reflects an interference of these cations with an electrostatic interaction between the exchange protein and the polar head group of phosphatidylcholine.  相似文献   

18.
Complex I is the site for electrons entering the respiratory chain and therefore of prime importance for the conservation of cell energy. It is generally accepted that the complex I-catalysed oxidation of NADH by ubiquinone is coupled specifically to proton translocation across the membrane. In variance to this view, we show here that complex I of Klebsiella pneumoniae operates as a primary Na+ pump. Membranes from Klebsiella pneumoniae catalysed Na+-stimulated electron transfer from NADH or deaminoNADH to ubiquinone-1 (0.1-0.2 micromol min-1 mg-1). Upon NADH or deaminoNADH oxidation, Na+ ions were transported into the lumen of inverted membrane vesicles. Rate and extent of Na+ transport were significantly enhanced by the uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP) to values of approximately 0.2 micromol min-1 mg-1 protein. This characterizes the responsible enzyme as a primary Na+ pump. The uptake of sodium ions was severely inhibited by the complex I-specific inhibitor rotenone with deaminoNADH or NADH as substrate. N-terminal amino acid sequence analyses of the partially purified Na+-stimulated NADH:ubiquinone oxidoreductase from K. pneumoniae revealed that two polypeptides were highly similar to the NuoF and NuoG subunits from the H+-translocating NADH:ubiquinone oxidoreductases from enterobacteria.  相似文献   

19.
J E Lever 《Biochemistry》1984,23(20):4697-4702
Apical membrane vesicles isolated from a continuous renal cell line, LLC-PK1, catalyze electrogenic Na+-stimulated hexose transport and Na+-dependent binding of 3H-labeled 1-[2-(beta-D-glucopyranosyloxy)-4, 6-dihydroxyphenyl]-3-(4-hydroxyphenyl)-1-propanone [( 3H]phlorizin), a competitive ligand of this transport system. Phlorizin was not itself transported across the membrane and thus can serve as a probe of the binding step. The stoichiometry of Na+-dependent phlorizin binding in vesicles was 1:1, whereas Na+/hexose cotransport in vesicles exhibited a 2:1 stoichiometry. Na+ increased the affinity of phlorizin binding without affecting the total number of binding sites. An increased number of Na+-dependent phlorizin binding sites was observed under conditions of interior-negative membrane potential. These results are consistent with a model of the Na+/glucose cotransport cycle in which the unloaded transporter is negatively charged and its orientation influenced by membrane potential. Glucose and one sodium ion interact with the transporter, resulting in an uncharged complex. Binding of a second sodium ion triggers translocation of glucose and both sodium ions via formation of a loaded carrier complex bearing a single positive charge.  相似文献   

20.
We isolated two cDNAs from the mosquito Aedes aegypti, an L-amino acid transporter (AeaLAT) and a CD98 heavy chain (AeaCD98hc). Expression of AeaCD98hc or AeaLAT alone in Xenopus oocyte did not induce amino acid transport activity. However, co-expression of AeaCD98hc and AeaLAT, which are postulated to form a heterodimer protein linked through a disulfide bond, showed significant increase in amino acid transport activity. This heterodimeric protein showed uptake specificity for large neutral and basic amino acids. Small acidic neutral amino acids were poor substrates for this transporter. Neutral amino acid (leucine) uptake activity was partially Na+ dependent, because leucine uptake was approximately 44% lower in the absence of Na+ than in its presence. However, basic amino acid (lysine) uptake activity was completely Na+ independent at pH of 7.4. Extracellular amino acid concentration could be the main factor that determined amino acid transport. These results suggest the heteromeric protein is likely a uniporter mediating diffusion of amino acids in the absence of ions. The AeaLAT showed high level expression in the gastric caeca, Malpighian tubules and hindgut of larvae. In caeca and hindgut expression was in the apical cell membrane. However, in Malpighian tubules and in midgut, the latter showing low level expression, the transporter was detected in the basolateral membrane. This expression profile supports the conclusion that this AeaLAT is a nutrient amino acid transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号